gamlet

View on PyPIReverse Dependencies (0)

0.0.1 gamlet-0.0.1-py3-none-any.whl

Wheel Details

Project: gamlet
Version: 0.0.1
Filename: gamlet-0.0.1-py3-none-any.whl
Download: [link]
Size: 24564
MD5: f07897516c67af3be919ffe0210c3bdb
SHA256: d9e1cce987c041592ea2b307744e243689e0368dedd12efe5f8bd37fdfdbe329
Uploaded: 2023-10-24 08:00:14 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: gamlet
Version: 0.0.1
Summary: Framework for meta-optimisation in AutoML tasks
Author: NSS Lab
Author-Email: itmo.nss.team[at]gmail.com
Project-Url: Homepage, https://github.com/ITMO-NSS-team/GAMLET
Project-Url: Bug Tracker, https://github.com/ITMO-NSS-team/GAMLET/issues
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Requires-Dist: fedot (==0.7.2)
Requires-Dist: openml (==0.14.1)
Requires-Dist: pymfe (==0.4.2)
Requires-Dist: numpy (>=1.16.5)
Requires-Dist: pandas (>=1.3.0)
Requires-Dist: pytest (>=7.4.0)
Requires-Dist: scikit-learn (>=1.3.0)
Requires-Dist: scipy (>=1.7.3)
Requires-Dist: tqdm (>=4.65.0)
Requires-Dist: thegolem (>=0.3.2)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 3388 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.41.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
meta_automl/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
meta_automl/data_preparation/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
meta_automl/data_preparation/datasets_train_test_split.py sha256=7b8QYIQVp4gQ3B9by-7Pn36hkk1XIy3b6_9kdrDm8tA 3357
meta_automl/data_preparation/model.py sha256=cCjJ8DnaksbbWAYMmUZmaUbFjjaBE-VmLJw16hCijcM 422
meta_automl/data_preparation/dataset/__init__.py sha256=B1wM6xie8ChFdaC_XgLXam0rfmQXGDfP9k1gNKh2Vr8 193
meta_automl/data_preparation/dataset/custom_dataset.py sha256=w3Gu0WKmnTIyLcMW1gWzuP8MEDXRkyuAe6A9GS441-0 986
meta_automl/data_preparation/dataset/dataset_base.py sha256=2_BOYIBeBQ4kejL85xw4rTss-_2o_GwJ_EdtzxpbXVY 988
meta_automl/data_preparation/dataset/openml_dataset.py sha256=AjIJXuQp_XyMTUcn3PEchQorVzVhkWVQEdevgNxw-RE 1825
meta_automl/data_preparation/datasets_loaders/__init__.py sha256=ucEPxDU6gq-YEUa-98wLKCMG-_Oc7N2IHqvmyJWzMtk 103
meta_automl/data_preparation/datasets_loaders/custom_datasets_loader.py sha256=b651Q_xgke4JyAutQTLjojCsA1DQCqHM3D2NaY2A0FI 982
meta_automl/data_preparation/datasets_loaders/datasets_loader.py sha256=DTcdmnCukjiPUSF1QNo3I-GTAws2eD-8OFBNve25qB0 425
meta_automl/data_preparation/datasets_loaders/openml_datasets_loader.py sha256=9CxYLfzCcnHJF4jcF_IKv0mkBOcEturpHqGleswUk7k 1450
meta_automl/data_preparation/file_system/__init__.py sha256=2oVJuER_Iw-IVBIvFzug2svoh5BECh6keGnXXeSIKh4 543
meta_automl/data_preparation/file_system/cache.py sha256=OdZjtMwrD0mUpI43fJ20SYqOs9aoPwpiAK9_90lYtk8 3840
meta_automl/data_preparation/file_system/cache_properties.py sha256=iRvb9b0eo5aTF8N0RonJ6RLjVdJ9sGfFMU5NfemnZjw 486
meta_automl/data_preparation/file_system/file_system.py sha256=jtDWTns0UVR5T6okkRYKyN8vHIauxfkj31vPsR8olmo 578
meta_automl/data_preparation/meta_features_extractors/__init__.py sha256=osbDeQopaso462e-Gw8PtEF2Kx3afFSOrc4UKYhp0ag 105
meta_automl/data_preparation/meta_features_extractors/meta_features_extractor.py sha256=IyS1rfJ7q2uAOGkTh7AMjrk37beRYGi1PsmZMmyqaSw 1330
meta_automl/data_preparation/meta_features_extractors/pymfe_extractor.py sha256=tuxTsPy6Sy1_7yYMkN9rBQ9PXCn84agiy8BmLLYxitc 3574
meta_automl/data_preparation/models_loaders/__init__.py sha256=-jblr8UWzkLCw_dXI4ju54uiBz_sw1MjE51uWs6oVv8 168
meta_automl/data_preparation/models_loaders/fedot_pipelines_loader.py sha256=vngO1Rx_NVXt9DxrltEf-6_WRN6mHHXy3wtKIr4pi0o 6406
meta_automl/data_preparation/models_loaders/knowledge_base_models_loader.py sha256=oAtCZvfsgvAL-dzaqY2375aK-RfH277lU58spKxeK_4 3218
meta_automl/data_preparation/models_loaders/models_loader.py sha256=2XPS9kcCdrzJg9nqsRMKxWL9imqgFQv8TBFpaIE2gG0 259
meta_automl/meta_algorithm/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
meta_automl/meta_algorithm/datasets_similarity_assessors/__init__.py sha256=AxEJ0y2zMWPsEG72Bvv__vSIq9Wk_s0Yg9NLRjIpPiA 181
meta_automl/meta_algorithm/datasets_similarity_assessors/datasets_similarity_assessor.py sha256=Gzcxk-GXZoNXNohDGB66T9hsH_Pw10jVLFuy5t_w7Ks 913
meta_automl/meta_algorithm/datasets_similarity_assessors/model_based_similarity_assessors.py sha256=hbToBv3s0o1LwrYCxktAI3pf50O2qZdKkM0DVaZiIe4 4264
meta_automl/meta_algorithm/model_advisors/__init__.py sha256=LQoDOiyTPVCj4rPdsZMMrsMYLidEyMX7fKwgyrrUS4Y 241
meta_automl/meta_algorithm/model_advisors/diverse_fedot_pipeline_advisor.py sha256=o84HosmUCs4XnVY955C_a4mlpN6szgJo-iWFkNkFNgk 2564
meta_automl/meta_algorithm/model_advisors/model_advisor.py sha256=xAjT2O1cG2KeS4WgMR8GGNc481A71u5FRr9OUlvoWkw 2846
gamlet-0.0.1.dist-info/LICENSE sha256=UqBLi3ypBvqztZ6UKKQR46o3st4rL4iak42hVagHNGI 1567
gamlet-0.0.1.dist-info/METADATA sha256=ZT403v0NORA4pNopO0cWjw4p-62Nm5e1BrSCYW1Y9lI 4199
gamlet-0.0.1.dist-info/WHEEL sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A 92
gamlet-0.0.1.dist-info/top_level.txt sha256=_9KVTCnzC6KhzsEPpQnxNFvct39rNe1pvrL5hV4h1iQ 12
gamlet-0.0.1.dist-info/RECORD

top_level.txt

meta_automl