fractional-uplift

View on PyPIReverse Dependencies (0)

0.0.1 fractional_uplift-0.0.1-py3-none-any.whl

Wheel Details

Project: fractional-uplift
Version: 0.0.1
Filename: fractional_uplift-0.0.1-py3-none-any.whl
Download: [link]
Size: 57417
MD5: 4673ae9dd4ba9170f1e46105ce41b3ac
SHA256: 32a7c8dec6104d9b59b79e7b67d4500d5e060d4f2618b9c4aed86cbbd3b6a228
Uploaded: 2024-02-29 15:35:59 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: fractional-uplift
Version: 0.0.1
Summary: Package for performing uplift modeling that is aware of the cost of treatment.
Author: Google gTech Ads Data Science
Home-Page: https://github.com/google-marketing-solutions/fractional_uplift
License: Apache 2.0
Classifier: Development Status :: 3 - Alpha
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Programming Language :: Python :: 3.10
Requires-Python: >=3.10
Requires-Dist: numpy
Requires-Dist: pandas
Requires-Dist: scikit-learn
Requires-Dist: tensorflow
Requires-Dist: tensorflow-decision-forests
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 19489 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
fractional_uplift/__init__.py sha256=u6JLfuO2kadUcSOmkzc9DDg2T3xSsWNQfin3_H-pvOQ 1036
fractional_uplift/base_models_test.py sha256=2n0xY87ROh0kUNtTAz37omlAqktBah6VHlkdgjR2u4w 7884
fractional_uplift/constants.py sha256=GZgwy4QblT7dlSmfKmcedM8cNryCLNx52l710oCIlis 1576
fractional_uplift/datasets_test.py sha256=6pQdox-GO8jJFc4BtNKUylTOWW5jVnp1MbMwRoMRrOg 29158
fractional_uplift/evaluate.py sha256=Fj5b6LJ51Gluutk3s572fYkoXEZo6RVBeTZlffLu-_0 15144
fractional_uplift/evaluate_test.py sha256=N87DlchgywdUIJWW8whoPvdnEEON2_9O9Eg8pNMHfQY 8969
fractional_uplift/example_data.py sha256=epF9CSE25AdDosYFgHkTpE6rhcxEDYIB2REMLyYFRYA 10311
fractional_uplift/example_data_test.py sha256=U11HPsH1tZZhbM2OsIz7kMYRqKoDPmR5LGf2DFtDUjY 10229
fractional_uplift/fractional_uplift_test.py sha256=HHgZyBnMWSMnkugaCFHf-ZPM3-_odikSywbaR-FjwhA 9958
fractional_uplift/meta_learners.py sha256=KT5dFX9wF1JUaTGmF9zm8_07jXuTNer2XXdSwdxdCw8 27970
fractional_uplift/meta_learners_test.py sha256=nKMy8uWvOFaSQfsWzCflW2qPdmQNii8HJGpDx7ks0M4 24460
fractional_uplift/object_duplicator.py sha256=niM1u0BmNDh5GM_HAm0gjWJJi5aVI_D_vwURkiEonEo 3613
fractional_uplift/object_duplicator_test.py sha256=oQnxKkL0XiKabK5BzWcehDAn1-YB3f0wmWwNdWEr0ls 2458
fractional_uplift/base_models/__init__.py sha256=Bb-x-cHprIOprMJeEb2sI-y2DIX_h1sxhph52hq4c90 1242
fractional_uplift/base_models/_base.py sha256=xgq1ynIyehtukFs8Pg9tJ-ntryE4KlanhaB2xBrnLF0 3976
fractional_uplift/base_models/tf_decision_forests.py sha256=5sl_A32p4WXjxBX3PUveTobdVQVsJWSv9RZ6bZrK4BA 4048
fractional_uplift/base_models/tf_decision_forests_test.py sha256=l6IgiirzrhmykLdm4d2gTjAAgbpnkDM2WaaSQtTHGsE 5699
fractional_uplift/datasets/__init__.py sha256=RY57E9mdYkr_uQhvNnNEz62jmduvpoQrrLFHu3vHtnc 1076
fractional_uplift/datasets/_base.py sha256=ntIzpNpEUZId25TvBHw5v3OHAfuvlOC_vfa3wzRZOqI 5496
fractional_uplift/datasets/pandas.py sha256=zOiK4RyvUReZUf5bdi3hkoeiS2mETYQuTZ8zGXGsAoY 15830
fractional_uplift-0.0.1.dist-info/LICENSE sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA 11358
fractional_uplift-0.0.1.dist-info/METADATA sha256=nBBj3E3e8Vn9sbWIM-wXXvRm2HfblUYK42JFCPYOPeI 20311
fractional_uplift-0.0.1.dist-info/WHEEL sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM 92
fractional_uplift-0.0.1.dist-info/top_level.txt sha256=1fmnQ4h5UclOyvrcDD_LbcFln7sg_e8dAd2lckgbpdM 18
fractional_uplift-0.0.1.dist-info/RECORD

top_level.txt

fractional_uplift