ForeTiS

View on PyPIReverse Dependencies (0)

0.0.2 ForeTiS-0.0.2-py3-none-any.whl

Wheel Details

Project: ForeTiS
Version: 0.0.2
Filename: ForeTiS-0.0.2-py3-none-any.whl
Download: [link]
Size: 91942
MD5: 332aacf81ec8dc9a08d5147ceb467654
SHA256: 24da2abcaf50202a1d8082e1264ca79a5eadd53832a83d3bc71b19f0719530e4
Uploaded: 2023-10-18 12:15:43 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: ForeTiS
Version: 0.0.2
Summary: state-of-the-art and easy-to-use time series forecasting
Author: Josef Eiglsperger, Florian Haselbeck; Dominik G. Grimm
Author-Email: josef.eiglsperger[at]tum.de
Home-Page: https://github.com/grimmlab/ForeTiS
Project-Url: Documentation, https://ForeTiS.readthedocs.io/
Project-Url: Source, https://github.com/grimmlab/ForeTiS
License: MIT
Classifier: Development Status :: 2 - Pre-Alpha
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: POSIX :: Linux
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.8
Requires-Dist: torch (>=1.11.0)
Requires-Dist: xgboost (>=1.5.2)
Requires-Dist: optuna (>=2.10.0)
Requires-Dist: sqlalchemy (==1.4.46)
Requires-Dist: joblib (>=1.1.0)
Requires-Dist: numpy (>=1.22.2)
Requires-Dist: pandas (>=1.4.1)
Requires-Dist: scikit-learn (>=1.0.2)
Requires-Dist: tensorflow (>=2.8.0)
Requires-Dist: tensorflow-probability (>=0.18)
Requires-Dist: statsmodels (>=0.13.2)
Requires-Dist: scipy (>=1.8.1)
Requires-Dist: pmdarima (>=2.0.1)
Requires-Dist: gpflow (>=2.5.2)
Requires-Dist: matplotlib (>=3.3.0)
Requires-Dist: changefinder (>=0.3)
Requires-Dist: bayesian-torch
Requires-Dist: blitz-bayesian-pytorch
Requires-Dist: tables (>=3.7.0)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 1938 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.41.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
ForeTiS/__init__.py sha256=RoeSvGl84KoKygROhWgVhoqfssmbSllDYBNfV4oVx6g 539
ForeTiS/dataset_specific_config.ini sha256=zfwaa7tsN1CLlER_QwViOpDZWP0Eze_gRrO7-EN3ahc 3210
ForeTiS/optim_pipeline.py sha256=7kqg-dyW1lsrzGIYvIuNMIMpjUrkSjgsE_tRdLLkBcM 9755
ForeTiS/run.py sha256=W7GckF82faFPNFwDjC3JpVwNjEbCqy9Vxa_JV7iw7NI 10879
ForeTiS/evaluation/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ForeTiS/evaluation/eval_metrics.py sha256=rHgIuVmn5Zn2FS93yuEbNhJ1NY73ygymQDgcPMbGd40 2291
ForeTiS/model/__init__.py sha256=9eW_s4rMQIhRWoOiruyh7APe20T_fds0jsC2pN0vgN4 529
ForeTiS/model/_base_model.py sha256=Rkk3Qacol4Kwt1L6-2AmH0H0iLZQBuJ_xCvPxclj4gI 11501
ForeTiS/model/_baseline_model.py sha256=qq1GlgW-uEl5T8uF-vaoLoEKlo_6l1XXj5CvVvt6EhM 2716
ForeTiS/model/_model_classes.py sha256=Ntn7IQx12jUodE3zDQSz0CvEMMe72pGzaitKFhlHPbg 1241
ForeTiS/model/_model_functions.py sha256=UKQzrpK44drTMc38QqD5WHYyBhUqmPwMOinCvEg6uno 846
ForeTiS/model/_sklearn_model.py sha256=SmQcNSSq5aZkgWHVpUHqprblJc9S_6w1qm7W6X9iD5U 4179
ForeTiS/model/_stat_model.py sha256=RMZdaOuCNPpxxp4ysTWy9vbuU_5F0EPWeMy7Ex5nX4A 11606
ForeTiS/model/_template_sklearn_model.py sha256=NzsZTJhOU5gvUHjp_qa4fqxABvndX_tdU3ke1XsELNo 2193
ForeTiS/model/_template_stat_model.py sha256=iovHas7FjpKwZH91Xo1ZcrsPmcQT9AGzNbemThk2dqg 2610
ForeTiS/model/_template_tensorflow_model.py sha256=P8AKAFJWuo8DOk2rpXIkZ6wuZyKL__2dX_YdyJN4JTE 1218
ForeTiS/model/_template_torch_model.py sha256=aKP7yJI30TyK6v3ByKdJYanA7dYqzZ6p3HLLIaVlEWU 2613
ForeTiS/model/_tensorflow_model.py sha256=7gvmiwaUzAwNVWWxRyMfG6dRUdCkKuybnPWXu9CIqS0 10129
ForeTiS/model/_torch_model.py sha256=dvYNWXiF-9hjkyIZjV-DwSTUyd02V5gR3jLsKyRZVs0 14374
ForeTiS/model/ard.py sha256=4vHSCkoUE-qBuJFlEWI-rOpjwKje9M7ZBgmxoG-pJoY 2680
ForeTiS/model/averagehistorical.py sha256=seVe7iUIXekWuXxL6N9pgF4nfeBH32TrXKbJS8Gi6FQ 651
ForeTiS/model/averagemoving.py sha256=8tQPtUbQXhDW0eOJkjacYtq5l22WodKAoUreUj5tKa0 855
ForeTiS/model/averageseasonal.py sha256=PYoKlWyKs0EWxeR-dIkk2UvUhilT6BohRHgX673_N1U 698
ForeTiS/model/averageseasonallag.py sha256=FswwfVj4mTUxgWQnUVRjBu3bbvkP1Tet28ZHaCUxIEE 2478
ForeTiS/model/bayesridge.py sha256=vAcm4t_NXyhvMnfyC8EtOS0tz-suDVFXmKJyuHX8LKg 2582
ForeTiS/model/elasticnet.py sha256=XjYsy9qDvR4HhQ-s71uz593VuV1I9SbrjiMYZ2GuKus 2040
ForeTiS/model/es.py sha256=q-ubIpmqaiXK3tEGzI_mogdfk3u-8UqzLMIx7318sNw 2471
ForeTiS/model/evars-gpr.py sha256=ISD25Pij2Artbj8LM5RUYkEq9gl5v6X7Yk_IZyKIGBg 12036
ForeTiS/model/gprtf.py sha256=1OZ6U8EBdECcP0Jgs2bows-8GmKssECWY3-HU6SIptM 228
ForeTiS/model/lasso.py sha256=z1E5-re0Se6yyIyfxx-aa29xwETXGswoauY9WgfihqI 1757
ForeTiS/model/lstm.py sha256=xt6RPH1GuxdgpRZaV9yzlpJzqV_l736yHFE7qnidcxA 7287
ForeTiS/model/lstmbayes.py sha256=lC3OobDvtpIFoOlk6bZs5vrd2l5Dg9qCFHtVEsSgeqg 11141
ForeTiS/model/mlp.py sha256=zhak9ABTfA9VXlK8lY2N3MLZUNu4sJEOv-2oYOC5xQ8 2940
ForeTiS/model/mlpbayes.py sha256=YtmGhwrgKwzJD4_XID-hhhMT22OH5dlJbmiKOW0O7N0 6948
ForeTiS/model/ridge.py sha256=-yIia8FTA2k9l9iZd8Q_qqhw3leLdBw-BwM7HELnFWc 1537
ForeTiS/model/sarima.py sha256=M0rQ67IfqzBUg3fp9eXLfj82EwIAXSUKAsaMVTCanzM 2451
ForeTiS/model/sarimax.py sha256=hF67NPPTjZZlyvFWymoJpoIYXkMvIdAI37S6LF7-C5M 2492
ForeTiS/model/xgboost.py sha256=otzcAqXid-1XM7pV-v74YGuNXFllSXOhaH-FIBb3wc4 2418
ForeTiS/model/_additionalmodels/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ForeTiS/model/_additionalmodels/gpr_sklearn.py sha256=GLPQINGW0P0opzoF6iKAnuRSCuZ26HjK2LvTGZR2l2c 5781
ForeTiS/model/_additionalmodels/lstmbayes_intel.py sha256=2Bl-hL1-JBx-tscB3dxL8i3ZtxKCzV9fLbflb5F-lLU 9985
ForeTiS/model/_additionalmodels/mlpbayes_intel.py sha256=grK-FVWYuc8XCY5V83nzb_Du0YAaPzL507gqyhtobyg 6485
ForeTiS/optimization/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ForeTiS/optimization/optuna_optim.py sha256=SPCIagH9kKDVuLF5sbc6HyAXi1n1S0ZgvrHV0JkuJKs 46491
ForeTiS/postprocess/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ForeTiS/postprocess/model_reuse.py sha256=BqXj9Gv_nfsFZ1biYJm_1kvMWI4QRK2nGEndNZOmAfA 6353
ForeTiS/postprocess/results_analysis.py sha256=2Hu-dsDOdKyBSkoiWIbxcTWwhKLMbS-yGUmMjTO6g08 711
ForeTiS/postprocess/run_interference.py sha256=EVM2hNfBXmf13QDEJLogbMWSg6LPfQ4dtElYVp4SLt0 2422
ForeTiS/preprocess/DateCalenderFeatures.py sha256=uDVc0zcN8YEp64JCPKqWQCkDBMko3J0mnPQNCPf_K1Q 2200
ForeTiS/preprocess/FeatureAdder.py sha256=SGhJ5KCvnXaypJJQ9BhnEUBBWrKbkDTfbBzWpbtWlVk 2025
ForeTiS/preprocess/StatisticalFeatures.py sha256=hZ4-pPwwRqRlxLRiq563p9yj_Ic3GDB-FPS7teSvlvs 2613
ForeTiS/preprocess/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ForeTiS/preprocess/base_dataset.py sha256=FjG3vQ1jKQZSa6qIgr7zEHafafxsi5fJZTcR2bvEK-k 16466
ForeTiS/preprocess/raw_data_functions.py sha256=e-36huyPlrsqG20j-tVigSTymU_AT-GHV8Sx_WWQTGo 3943
ForeTiS/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ForeTiS/utils/check_functions.py sha256=bufEgq_7tYO5hJWftLy_KtRRC7HUEqYtwCIjroDIadk 2668
ForeTiS/utils/helper_functions.py sha256=FeERkICWtL3huyj7jBUB3vEi0cHGREEeoDznvByHs4U 5353
ForeTiS-0.0.2.dist-info/LICENSE sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY 35149
ForeTiS-0.0.2.dist-info/METADATA sha256=ZvvE85mwm0rDaZXrxCoyhkrWMHZF85ZXT0uaBB09j_w 3360
ForeTiS-0.0.2.dist-info/WHEEL sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A 92
ForeTiS-0.0.2.dist-info/top_level.txt sha256=_fyC7iCBRUQ0fIt0ucTiPe24kR-lecsVZln70SQzG14 8
ForeTiS-0.0.2.dist-info/RECORD

top_level.txt

ForeTiS