fold-core

View on PyPIReverse Dependencies (0)

2.0.1 fold_core-2.0.1-py3-none-any.whl

Wheel Details

Project: fold-core
Version: 2.0.1
Filename: fold_core-2.0.1-py3-none-any.whl
Download: [link]
Size: 94045
MD5: 1b0b176415c8375b687810e6059d9f61
SHA256: 9664500d9246dd9414fed35fac555d201f2a341abf08398da69ece0cf17eec47
Uploaded: 2024-02-29 15:16:05 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: fold-core
Version: 2.0.1
Summary: A Time Series Cross-Validation library that lets you build, deploy and update composite models easily. An order of magnitude speed-up, combined with flexibility and rigour.
Author: Mark Aron Szulyovszky
License: Proprietary
Keywords: time-series,machine-learning,forecasting,forecast,nowcast,models,time-series-regression,time-series-classification,financial-machine-learning
Classifier: Development Status :: 5 - Production/Stable
Classifier: License :: Other/Proprietary License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Requires-Python: >=3.11,<4.0
Requires-Dist: deepmerge (>=1.0.0)
Requires-Dist: finml-utils (>=2.1)
Requires-Dist: holidays (>=0.10); extra == "tests" or extra == "all"
Requires-Dist: image (>=1.5.33); extra == "docs"
Requires-Dist: imbalanced-learn (>=0.11.0); extra == "tests"
Requires-Dist: iteration_utilities (>=0.11)
Requires-Dist: krisi (>=1.3.0); extra == "tests" or extra == "all"
Requires-Dist: lightgbm (>=3.2.1); extra == "lightgbm"
Requires-Dist: mkdocs (>=1.2)
Requires-Dist: mkdocs-autorefs (>=0.4); extra == "docs"
Requires-Dist: mkdocs-gallery (>=0.7); extra == "docs"
Requires-Dist: mkdocs-glightbox (<=0.3.2); extra == "docs"
Requires-Dist: mkdocs-include-markdown-plugin (>=4.0); extra == "docs"
Requires-Dist: mkdocs-jupyter (>=0.22); extra == "docs"
Requires-Dist: mkdocs-material (>=9.0.0); extra == "docs"
Requires-Dist: mkdocstrings-python (>=0.9.0); extra == "docs"
Requires-Dist: numpy (>=1.16)
Requires-Dist: p_tqdm (>=1.3); extra == "all"
Requires-Dist: pandas (>=2.0)
Requires-Dist: pandas_market_calendars (>=4.1.4); extra == "tests" or extra == "all"
Requires-Dist: pre-commit (<2.21.0,>=2.20.0); extra == "quality"
Requires-Dist: pyarrow (>=2.0); extra == "tests"
Requires-Dist: pytest (<7.2.0,>=7.1.2); extra == "tests"
Requires-Dist: pytest-cov (>=4.0); extra == "tests"
Requires-Dist: ray (>=1.4); extra == "ray" or extra == "all"
Requires-Dist: scikit-learn (>=1.4)
Requires-Dist: statsmodels (>=0.12.1); extra == "tests" or extra == "all" or extra == "statsmodels"
Requires-Dist: tqdm (>=4.0)
Requires-Dist: typing_extensions (>=4.4.0)
Provides-Extra: all
Provides-Extra: arch
Provides-Extra: docs
Provides-Extra: lightgbm
Provides-Extra: prophet
Provides-Extra: quality
Provides-Extra: ray
Provides-Extra: sktime
Provides-Extra: statsforecast
Provides-Extra: statsmodels
Provides-Extra: tests
Provides-Extra: xgboost
Description-Content-Type: text/markdown
[Description omitted; length: 9301 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.9.0
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
fold/__init__.py sha256=vFPS630pIIzj2QYarPbS7E3Mp3Ur88ks2H0cruuZD3M 176
fold/base/__init__.py sha256=UqEuXwIb4Vo52-KDkxn7Mq0Dd5yTEo30hYlvcxjOCsY 265
fold/base/classes.py sha256=V1XXw4gyYivZGPptJvYQUq_TU6dgTS5sbBB1RDoR9GQ 14827
fold/base/scoring.py sha256=9HJKQoj3IbF86YtoC2n-KtnrsfY8WLTOB-sDKOOvU8c 2113
fold/base/utils.py sha256=x0gMfh3Bnc9XlOM--ikL7PVyB9Yh6V4n6swMv-1mpuE 2532
fold/composites/__init__.py sha256=_mqdKkRB2Z1ZaSn3-CyJ5pe7zW67qQ_cSrp0BZ5yVxA 460
fold/composites/columns.py sha256=RmX-nOyxHt9myIrs4YR1r7zLR09j1raTfa_4QqUV760 12169
fold/composites/concat.py sha256=g3Dy7evJSYVtp3Z6ddb2N9HzbpxzdXxMUDy-ZXlt2rQ 5892
fold/composites/ensemble.py sha256=pglny1-ZFgJJ432OsUNKxQf61bU4VzNCtQSmy7mzBj4 3458
fold/composites/metalabeling.py sha256=YBFoyRC_byf21xx_gFuE7LyIdvs4tqJb-vvfID63WqA 5921
fold/composites/metalabeling_strategy.py sha256=hg3GSMxRs86W4suNqKIfOEEK6QEyZv2dWRXmvU_8C1w 2400
fold/composites/residual.py sha256=INF7dJUFvb8IG_mH7ug0VNhVwsGFR7_2S3oiJBaD52w 5404
fold/composites/sample.py sha256=B_-_qAL6oTMlHsWymWlJ1nNubRWLOKuk2k7VFf9ufOM 3144
fold/composites/selectbest.py sha256=ulBEmXZ_JIa8jc-zv2W5W9SCsSyh-OPKSkwmviORtv4 3666
fold/composites/target.py sha256=CoXcy3JpRhB4aSGM-stwcEZSSLFHGkqASePJU2OGG5Q 5332
fold/composites/utils.py sha256=H7lAbOgrb07ygATFTgvVYZIV0p0heEeSjIX64Imugdw 2454
fold/events/__init__.py sha256=v0uJFhd2z5Nd1UD0QROIxjItIvenF2kjpdck7-R6e7A 818
fold/events/filters/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
fold/events/filters/everynth.py sha256=tvCbH0EDe5hbkPEjw5dQ1aUgLAnQ2VTxVkzTf_8vjqM 241
fold/events/filters/no.py sha256=NY0Fp8I6lgFjQCwknEIwmTDc9goM0bQhcyedE3d2ySs 315
fold/events/labeling/__init__.py sha256=f15ApnbFeJjZAtW-ge5xfv0EQtU1M5QHjbFOzDdoBEA 63
fold/events/labeling/fixed.py sha256=UURpvgXFM6ZFCwhE43k-MwvMpI9hnvIwZmikrVqjeB4 5361
fold/events/labeling/strategies.py sha256=DSYC4KJwTER46OzdRhOkw-NA2abtvzveKh2z1yuGml4 521
fold/events/utils.py sha256=XNoFRatTwlVoQWmifW7OrSf03O9JwKWUqGO6Yan838Y 203
fold/events/weights/__init__.py sha256=4CIUf6kMAgi0GemHleGJ5Xnnvg2kn2aaDG6vBFyP_c8 293
fold/events/weights/max.py sha256=ijazZIMMlIY5Ldabo7XMi3oycNGuFWIwqL85cZRMkZI 1257
fold/loop/__init__.py sha256=VG-uwTDn-mAm4oOjWH5rJpy_ZwMiPBHltn0zql_4OLc 335
fold/loop/backend/__init__.py sha256=1mVRdabHTv_e-Oz43UMvrDnzB1BxbjIeqGWcUA-MpAc 1119
fold/loop/backend/joblib.py sha256=syqVoyoIw62v_0UKvo1SxnM-ZsSsAfQBrgJQSteFZto 3667
fold/loop/backend/pathos.py sha256=QuWKL78so0jDFUNnPE_mWSfe9PsmeZT6zHA1uv75Vps 2526
fold/loop/backend/ray.py sha256=sinHaraQ36f8frs55CAChREkn3hRAKoP2MdJTSJLP3M 4556
fold/loop/backend/sequential.py sha256=mw6LEtde-iMdyZW8lSi6cOelZQWG6ib2rqCDLjjGaQY 2808
fold/loop/backend/thread.py sha256=20JXskdyQfQ8zvaIYW7zYGoGgxBpBnJAdqusWI8F7xY 2862
fold/loop/backtesting.py sha256=mFfpXVr4Ysj90ukM6WpPqpPgcgx-a1LyGTG0Ngih5X4 4968
fold/loop/checks.py sha256=iP8bKk12C4CjhWaGRB_vxqt7uTwPtphwgWmlP5aRuk0 927
fold/loop/common.py sha256=20ZFMR1NmIV9hDou1mZ7W1OXhZuuFaMNFutZAf2G4ak 18430
fold/loop/encase.py sha256=ayr-Rmxozhr_9THWjG5JiGaO34unGFFJVNMehXRCZv0 7194
fold/loop/inference.py sha256=h5JChCPoJ2rNtLXCDVY7oM5I_bO083EoPC6cWoUW6cY 2624
fold/loop/process/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
fold/loop/process/process_minibatch.py sha256=WhwOZmnySl80H6jKiSSWkqgVBPuU-tcsLu8KJOe-AV4 1400
fold/loop/training.py sha256=_Uh0Y0pJNkIm7ncquggnQP27dQvXlPU2CAmgZW29gfk 7402
fold/loop/types.py sha256=Lr8q6BSxXyAgmxQ8HkzLIrXMZ0ST2pY1nU80bzIlDCM 990
fold/loop/utils.py sha256=KoHDtyPMeyF3iX65Zmc-nirFXwOMljH9jDWPu8r0f6s 2794
fold/loop/wrap.py sha256=o_vtC0atZU5gLyfepqFs645FMHMYPPGW8MMATDpb4-E 2122
fold/models/__init__.py sha256=VfqBrbZ27Owgy5-gX2UhpFchHPFQYPY_RMCNv3semh0 294
fold/models/base.py sha256=gPd-KklS8qN451_GvKX_bQjyStmGmWtHTzyZ-ehN-2E 2185
fold/models/dummy.py sha256=zfbiKbVhObOH3uFLNW3AeQ-gvNFpBxJa91bqW5R4iH8 4768
fold/models/random.py sha256=pqbamqDYwbeo3RtX2SnG_euvFAaSz-PrlD8x69-gquQ 4300
fold/models/sklearn.py sha256=X5rrMOV2500x7GgS2nRvWkrkJNt4kNIsuRrPPK5JAtQ 5857
fold/models/wrappers/__init__.py sha256=5D3r_CmTurqmnSgFz2A89CRpEWCfMpwM3ypAF7-Rml8 56
fold/models/wrappers/convenience.py sha256=gkrgjkGVtmZrDLDc4BB_w7HjQaOP2GUepUaTMqQ4lu0 536
fold/models/wrappers/gbd.py sha256=gdkSedUmEcaE5Kqhwb7s2UtF45R35CWgoBQBWNQgsYM 6642
fold/models/wrappers/types.py sha256=sDcEOgqJgOeEFPtT0eq31W6hBzjQ0KtaRXjlqXiMUTg 169
fold/py.typed sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
fold/splitters.py sha256=r7NOQ6xOc1nSdIIikb2Nf_qWHWrq87Q1IpdRRC7aJzU 11652
fold/transformations/__init__.py sha256=gZiV_Bs5KJUWFQxD7vRW6BDH1L_8po8BVUyXx8qt-k4 554
fold/transformations/columns.py sha256=Zbwnxo_V_AJ0VqixDWnK4IH7nJeVQLzhR6WTSFIye3Y 7648
fold/transformations/date.py sha256=36l4zPSM42wT-6g2sYAv0AAa__ni4hkO-UIWxYCz7Vw 5118
fold/transformations/dev.py sha256=S-yK4ZJEJoWWTo8aFt7SVGc3nSIixEUDgamq2RpYfNg 5184
fold/transformations/difference.py sha256=fgaGiDzAEFteji86qj9Kc6DYS3UORrH68fnK28ANXxo 3748
fold/transformations/features.py sha256=kuCkBADSvdpF8yxWPJ6iNUwEZlLcecPDTi1lWQn1rMM 11064
fold/transformations/function.py sha256=OJPnfsjTIbCvYoQhqAti-5IVZUZok5C6s7vJ44lYK2I 1668
fold/transformations/holidays.py sha256=JEt2rfZ3PBnDJCCNwN1uYs3P4q-q_Qv6CZ8G8K9JzT8 9720
fold/transformations/lags.py sha256=UjFttXNz8uS1_HaYJltKQkYEvRV7SZGaLf5Y2JrKPoY 4021
fold/transformations/math.py sha256=89iaY7THS02AkkHhNUJTEFc5W9bcrWxe9kpb5xnQtAA 6087
fold/transformations/scaling.py sha256=XzEgVzMsyWLTW-usbp4lcKWhfA8r7H-wsrpvU_L5mV0 3807
fold/transformations/sklearn.py sha256=AZ40mRRVeqhFTmuz8QT4I3mqGYlqr7DqygM-ayONRyM 8618
fold/transformations/types.py sha256=_8OMCgUH3BWYMA5BuA2RZGvhGZe4sjeMyIuDn4jqVsU 356
fold/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
fold/utils/checks.py sha256=qFgDyVF9D-FcATHkvfVJkIACw-qiJCtaOedQCi2orE8 3668
fold/utils/dataframe.py sha256=Fti0HJSmg5RUyURDJn1bQtCgC6Qguu1I53IPpO9iTrY 4118
fold/utils/dataset.py sha256=YPyi4Iqq8FGfUUMpBdsnu8coC57fbKYBMyo7jQqnT4Y 1809
fold/utils/forward.py sha256=p4GiA7o9fQJpqVUj5qaOVTgAom0sfS7ycJqjbuTbU7E 561
fold/utils/functional.py sha256=ExTFBRT0Gjtkgo74elidhRqE52V8bORUrF-O0cp0fSA 221
fold/utils/list.py sha256=9xY6iDjbPZBGUdIvtlEv_aRV_ts0iINlLVqRozpGLDM 2766
fold/utils/test_utils.py sha256=hro1DA7XkxLPf_rE-yNPF9H18GGgNT7VlQVXpqBvhDw 782
fold/utils/tests.py sha256=ZTBXKCLkwyo-nmQsbV80ejq14BV12uuYBizmbvbcnCI 5120
fold/utils/trim.py sha256=SeieC4kd_EFOmBnU97KDFq4dyX9VlTBe-aqvLdFFuUg 862
fold_core-2.0.1.dist-info/LICENSE sha256=s4SkVXyMEv0exwol3m79PgwyHeZfhI4YiZsdAJxpaKc 3870
fold_core-2.0.1.dist-info/METADATA sha256=wXjmhDe9B66w2TfiVdoiZFkHa1goFpl53FaWxGZ_AZ8 12167
fold_core-2.0.1.dist-info/WHEEL sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg 88
fold_core-2.0.1.dist-info/RECORD