flexinet

View on PyPIReverse Dependencies (0)

0.0.4 flexinet-0.0.4-py3-none-any.whl

Wheel Details

Project: flexinet
Version: 0.0.4
Filename: flexinet-0.0.4-py3-none-any.whl
Download: [link]
Size: 17033
MD5: 12afb7dfefbc66f60cbb3955e1d2ad21
SHA256: dc3bcae959a328ec241eb214749481a881d71a94684c0f24a58e0ce62a88b894
Uploaded: 2022-07-26 14:12:11 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: flexinet
Version: 0.0.4
Summary: Flexible torch neural network architecture API
Author: Michael E. Vinyard - Harvard University - Massachussetts General Hospital - Broad Institute of MIT and Harvard
Author-Email: mvinyard[at]broadinstitute.org
Home-Page: https://github.com/mvinyard/flexinet
License: MIT
Classifier: Development Status :: 2 - Pre-Alpha
Classifier: Programming Language :: Python :: 3.6
Classifier: Intended Audience :: Science/Research
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
Requires-Python: >3.6.0
Requires-Dist: anndata (>=0.7.8)
Requires-Dist: numpy (>=1.17.0)
Requires-Dist: torch (>=1.10.1)
Requires-Dist: licorice-font (>=0.0.3)
Requires-Dist: geomloss (>=0.2.3)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 2829 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.1)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
flexinet/__init__.py sha256=Hq3o7x7HolU4-75QnWre2VGTaulqnwy1KvxcdWy24Uw 222
flexinet/_io/__init__.py sha256=UpbEx---CO8UvJJGw8Ynyr8C_FHeQougEHWESFNE7wI 264
flexinet/_io/_load_torch.py sha256=OZt2yXgubbG9j-SY0V3YLwttA-e55qQhlIfgu7WU9i0 225
flexinet/_io/_read_h5ad.py sha256=nZ6tTMXukbE5RxiLeYOFPPKDkUHBO0of494MSlUUuy0 553
flexinet/_models/_LinearVAE.py sha256=-dS_3wJIBhF6fU6Itw59AHobnHCXK_-GOOCnAPyAREQ 3906
flexinet/_models/__init__.py sha256=QHtCzUH_nmYAHnsg1Swl01hAmc0yUF-ANSapdsnzkHU 476
flexinet/_models/_autoencoder.py sha256=F4dEtvchd--Ghol32jgcgtHZ3rzpQxbhtpHDJHZeaLA 1680
flexinet/_models/_compose_nn_sequential.py sha256=E0XPmdxc9nxUdQx5EV31d04IjdmcJR5D9O36zq5JB4U 2309
flexinet/_models/_potential_net.py sha256=1zqCHVyDeNPG2lBS9_pb1gFWzwFh1NZaRLs_3_LK1Eo 1634
flexinet/_models/_supporting_functions/_KL_Divergence.py sha256=x9gbUjEonvFZ2-IuZVP6Rbpbyr-iMEsLBbatTQhqPpI 505
flexinet/_models/_supporting_functions/_Learner.py sha256=Au95WHfQTo_a_7OtoJtMJcT3gQJclG6zNMvhyMuKX9s 2935
flexinet/_models/_supporting_functions/_OptimalTransportLoss.py sha256=p2gE9Rg439cGTktIzIUHPtMpjXX_kRa0221WYc2AAEU 1702
flexinet/_models/_supporting_functions/_build_encoder_decoder.py sha256=gLABzS53bpKKE6zh2ted5eIYZz-zyvVnxHxgFn4c8rA 2613
flexinet/_models/_supporting_functions/_compose_multilayered_nn_sequential.py sha256=raitBGLxGzFVnj8wm4TvlgtL6NK3_mk4Vwz7O5BO9b4 1118
flexinet/_models/_supporting_functions/_plot_loss.py sha256=KuiJIKRBQq-KV-XhgZnaKhTZXUNe5Hjv4vG4WdgrfMc 1297
flexinet/_models/_supporting_functions/_reparameterize.py sha256=MiZHX3cCtrXG08jkkEUagfIizNVilTTDfk1s5pA3gjY 1398
flexinet/_models/_supporting_functions/_training_loop.py sha256=taqvTxQzQhJrJl_qLRmX3H7fT87hgij_veH_81kfofk 711
flexinet/_models/_supporting_functions/_utilities.py sha256=ZqhTjTwUP24wbynYm1BDHYK6LcEFRbQSNOOh5AQC6NY 498
flexinet/_preprocessing/__init__.py sha256=CtC82spK4kCFUE-xopQfd0xzjRCChCsEO9vt3__T9C0 238
flexinet/_preprocessing/_split_train_validation_test_at_random.py sha256=9WDE-dUhlPzoWtelaGhq0B5el5PmAUdyW8Wc-ERvHnE 1109
flexinet/_utilities/_get_device.py sha256=AcFBf7qz_asdfUFik0ogivgIBCqqXebbw8Xqr7exhMI 339
flexinet-0.0.4.dist-info/LICENSE sha256=jXNk8OCt5ZKcsUH97c3CKMzPjoa6z2j2Adwg0Wxbw9A 1072
flexinet-0.0.4.dist-info/METADATA sha256=JvcYvR1Bz3_UwcqliH-YPoewTk-99nPu4l24AtRFq4A 3645
flexinet-0.0.4.dist-info/WHEEL sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA 92
flexinet-0.0.4.dist-info/top_level.txt sha256=fAmiUigNxXNufMZ1yUCUhYw0TPr7Sdt9TMGD1gdIbH0 9
flexinet-0.0.4.dist-info/RECORD

top_level.txt

flexinet