f9ml

View on PyPIReverse Dependencies (0)

0.1.5 f9ml-0.1.5-py3-none-any.whl

Wheel Details

Project: f9ml
Version: 0.1.5
Filename: f9ml-0.1.5-py3-none-any.whl
Download: [link]
Size: 120909
MD5: 997cd916c0cb9b6e66c4dea878e7f350
SHA256: 12d4b77020ba055dd055690b14cdcab696f58dbc56e7bf348de74d090e8e5070
Uploaded: 2024-11-13 15:19:35 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: f9ml
Version: 0.1.5
Summary: JSI F9 machine learning framework.
Author: Jan Gavranovic
Author-Email: jan.gavranovic[at]cern.ch
Home-Page: https://gitlab.cern.ch/ijs-f9-ljubljana/F9ML
Project-Url: Repository, https://gitlab.cern.ch/ijs-f9-ljubljana/F9ML
License: MIT
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Requires-Python: >=3.11,<4.0
Requires-Dist: corner (==2.2.2)
Requires-Dist: f9columnar (<0.2.0,>=0.1.1)
Requires-Dist: h5py (==3.11.0)
Requires-Dist: hydra-core (==1.3.2)
Requires-Dist: lightning (==2.4.0)
Requires-Dist: matplotlib (==3.9.2)
Requires-Dist: mlflow (==2.16.0)
Requires-Dist: networkx (==3.3)
Requires-Dist: numba (==0.60.0)
Requires-Dist: numpy (==2.0.2)
Requires-Dist: onnx (==1.16.2)
Requires-Dist: pandas (==2.2.2)
Requires-Dist: plothist (<2.0.0,>=1.2.6)
Requires-Dist: pydot (==3.0.1)
Requires-Dist: pygraphviz (==1.13)
Requires-Dist: pyqt5 (<6.0.0,>=5.15.10)
Requires-Dist: requests (<3.0.0,>=2.28.1)
Requires-Dist: rich (<14.0.0,>=13.7.0)
Requires-Dist: scikit-learn (==1.5.1)
Requires-Dist: scipy (==1.14.1)
Requires-Dist: seaborn (==0.13.2)
Requires-Dist: sympy (<2.0.0,>=1.13.1)
Requires-Dist: tables (==3.10.1)
Requires-Dist: torch (==2.4.0)
Requires-Dist: torch-geometric (==2.5.3)
Requires-Dist: torchinfo (==1.8.0)
Requires-Dist: torchmetrics (==1.4.1)
Requires-Dist: tqdm (<5.0.0,>=4.65.0)
Requires-Dist: uncertainties (==3.2.2)
Description-Content-Type: text/markdown
[Description omitted; length: 723 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.9.1
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
f9ml/__init__.py sha256=r_lcgAGvU2_2OGGQ4vzAhoEfFMaTDqjKYSBTH0pdluQ 1797
f9ml/data_utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/data_utils/data_modules.py sha256=Ir_DjfPVUzBNZqw7TdxpZK9PLRT2f1NjyHjaS2xRPFA 12064
f9ml/data_utils/datasets.py sha256=W94leXbTTVsw2CaTJ0fFUWuDaFz5SZm6KDD9-FkEbWU 15731
f9ml/data_utils/dequantization.py sha256=qNVQqd_BRAUl_GJ8icr7LvKRK5Ts4pIsVThG2dQXoz4 3262
f9ml/data_utils/feature_scaling.py sha256=N_hUXk6rXuaEB6WU1DpXyXbAfms_8V2MSkEvGGCsyjM 11817
f9ml/data_utils/gauss_rank_scaler.py sha256=Wia1sm4LrAwUElmsYS-BpxUZWs0dj1Cmm2BTV9GMffo 5475
f9ml/data_utils/logit_transform.py sha256=zi4hid0LTPsohI1T6VL6-hl0CZrJEo1tzlO9ekckOc8 1529
f9ml/data_utils/processors.py sha256=OmBAT7hv8n3QvvtNAahgG6LBg0igXa7FWmRmFHjh7Cc 16776
f9ml/data_utils/toy_datasets.py sha256=1y640FKeFZzpRLK2lHUWNg_I5LTYNd4SNc1gvOplzp0 14470
f9ml/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/c2st/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/c2st/c2st_pipeline.py sha256=LOBFhhyyzkRqX0ZsSc05XfVD4Y2kjmzm0jNMVGb4u38 6461
f9ml/models/classifiers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/classifiers/binary_model.py sha256=wjsrXSQdzu9zChTYax3C3039AKRRcG7BvvmAWY96_yA 2437
f9ml/models/classifiers/multilabel_model.py sha256=OR6bN55D532SZvMtvF4YXwa3T0NNRvXGtIu24nTzBnI 1679
f9ml/models/flows/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/flows/aux_flows.py sha256=ZxP9LcnDFsNMECtes-CzHZmLcqjwUN9MRyInRKGwBQk 5402
f9ml/models/flows/base_flows.py sha256=8iDFIcwEZv806v0DT_8RtI0e-f_t8zR3FdaHa2jRs14 7788
f9ml/models/flows/config/README.md sha256=rXPrz3UM1TPXKJulTqjchzzPToe3PcEXgdjzLq753fI 405
f9ml/models/flows/config/glow.yaml sha256=Okl0lfbVl6bDPLtI1VPjvKgCRuW6F2wKImAaaC1Xr7A 163
f9ml/models/flows/config/made_mog.yaml sha256=kt5FMEB4baNY3lN0sHhCmXh1HHvYoX3e6P2pF6W7vc4 155
f9ml/models/flows/config/maf.yaml sha256=bCY733zqwoGaXBlqJNN036CGjLYlUzyzd_L8c5bUkpw 193
f9ml/models/flows/config/maf_made_mog.yaml sha256=SaqnZUr8vZpo6ABUY1bF_lnYdb51uQjhJJ7myYe22Qs 331
f9ml/models/flows/config/nice.yaml sha256=ZCgyjpHTgr9fZJLCoh2s_SjNMBkVIr66UXTmLMOxNqw 141
f9ml/models/flows/config/poly_splines.yaml sha256=u6NmFTZl6y7rwwgyaBaKDhO_xfKrMqaJVYhFv3pReL4 244
f9ml/models/flows/config/realnvp.yaml sha256=wOsN1pptOJFSaWYikWWnOE-XBZ7hZs8MNuyMwumpKg0 211
f9ml/models/flows/config/rq_splines.yaml sha256=toTKY5y9YobB5hSQBbQNXq-UtfTXf9xCP2ATwJXIdOE 242
f9ml/models/flows/flow_utils.py sha256=3w6HPMdNqxLPpvVg8pHgiZuNOTSJmi9w7ttEwiabp1g 1364
f9ml/models/flows/glow.py sha256=hZtyum60yfqssrGPl_WXPmb9hH_7kBA3008UpMkNjG0 943
f9ml/models/flows/made.py sha256=e6VLi0Cmv20tMatasM3GrlaNfAN5BNXsVgZfM7l5g9w 12541
f9ml/models/flows/made_mog.py sha256=m76UrPBez--4R4dFGFdWXWDYwCMZl4pxFtwdXkdm8cw 6937
f9ml/models/flows/maf.py sha256=OPy2KoRW_qzdYbzp-0F3FI5yhWOrxIHL7HnbnfaDIaY 4545
f9ml/models/flows/mogs.py sha256=CPKxHSeWTpEY46R0plk7W6ObBe503Qw_MgqW5CNiMWE 3957
f9ml/models/flows/nice.py sha256=xuL_-w4o8Yuc-FRMxUqO3ClbGPo0UvWKhq6zMSEf1UQ 7842
f9ml/models/flows/polynomial_splines.py sha256=c93uWr7L2wyPBe63NUdZNRoKYCYLnpGa7_Bo0ENzkyo 22515
f9ml/models/flows/real_nvp.py sha256=rIR_FBvOFFbPtiXg6unRoTa9Er4S5XFXSYEHpkRl3MI 8385
f9ml/models/flows/rq_splines.py sha256=OLqqQlKmoD-J4bxUU731UNRV7TD0yBl9hJGvoadKLaU 13359
f9ml/models/flows/trackers.py sha256=iHljl7j7JdgDCzy1pE2sqtyIB6Tjcdog6D0yaf8EzGg 5254
f9ml/models/gnn/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/gnn/cnn.py sha256=k1TqI_GyNDhQZ7X0g8UYRsOkqTUlW_8PqMNCUidqzn4 1316
f9ml/models/gnn/data_utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/gnn/data_utils/graph_data_modules.py sha256=LWjArMX7Nd35uk-Vkt0sooxHiB76m_mlCqDwxOXxc5E 4406
f9ml/models/gnn/data_utils/graph_datasets.py sha256=RFv6mZ8TbNZ-sCWNQALgy_rZMxAIJ2wtzaqBO0H2c4A 8980
f9ml/models/gnn/data_utils/graph_processors.py sha256=_ECZn68ySwgkIYQbi3xTo6ojNToRDGenP1cXkoKk-7A 19314
f9ml/models/gnn/data_utils/graph_utils.py sha256=MdwTeE8wmmZDWWGec3iC8S2-Sli5pzmjBMpPokLSy7Q 3597
f9ml/models/gnn/deep_gcn.py sha256=NHd_2odUdPmv9K6WdlIvliI9fHGBDRqXxQ2nQv1jMa4 2631
f9ml/models/gnn/gnn_base.py sha256=sr4LWbW62-DUXOpUrOxDEtdwLSbBe5jsBR7NrguRju0 3973
f9ml/models/gnn/mpnn.py sha256=BkwOnEa-19wwWKRxKi7yYcABmwnpZJUBVFqoI36kMDA 9977
f9ml/models/gnn/sort_pool.py sha256=XuWtglEwXlqSSIaNrHsxEgRShO3FlUV2NRnjcowrjDg 4486
f9ml/models/neural_statistician/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/neural_statistician/data_modules.py sha256=x_Mp28DZwD005zrCYHd2kLutT8hSVi2UWwSmNCnHPds 1828
f9ml/models/neural_statistician/models.py sha256=N3klv4EE6Y50kvNqbtv5WJCKDZ5n_XgA24I_LQJDGmw 9850
f9ml/models/neural_statistician/nets.py sha256=uprZW-BM5_iq3SxNr2pT_eBpCuclv_sPl_Z89CyupAg 14570
f9ml/models/neural_statistician/trackers.py sha256=EHTZd__j87cWf6nv8sUOucrheLAKpIArvBjLfGUrJOE 13512
f9ml/models/neural_statistician/utils.py sha256=mVs3yDJKKVgXCLPddFwvu43wRLx3oYZGcjamcMXkVEw 4095
f9ml/models/np/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/np/base_np.py sha256=EwZ-QmBo_Q8J2U4GRW9UBiFlb-zCPpOjoM0d84ql1zU 5320
f9ml/models/np/cnp.py sha256=lvfk69YDLfXiNjnVxQxUn-79siebBpPRCWp_Oidw674 2971
f9ml/models/np/lnp.py sha256=1F0-xIEhT6TUgbyjorOLOfJX0faQXnfYH1f06kwgEUo 6228
f9ml/models/vae/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/models/vae/base_vae.py sha256=y4-a9jppQF3rCEyPnyW_lusPrSi2aLoXC9kVaeFbN0A 8763
f9ml/models/vae/beta_vae.py sha256=w24SD3hg-c37UYj5VluH-Ci9bYhrAO3KTxP4gqqHN7o 1283
f9ml/models/vae/distributions.py sha256=EXxmY3emB_T-KMVRVqlXVu_stdA1oBCLOfV1T4YqMBI 1449
f9ml/models/vae/priors.py sha256=hYFvcHUTn1BGbXjMTX-u6CgMg32F-wVuI0iSHnGbNv0 4815
f9ml/models/vae/sigma_vae.py sha256=ZH5X-b6MlyMsO3rHtw2ZQsHAHbNQfwezWC2FHH9-drI 3730
f9ml/models/vae/trackers.py sha256=g51tbGnIb__PbmIEcbA-JzWXa45KwK2KSc9xCwbkixo 13931
f9ml/models/vae/vae.py sha256=0yFSBf0xMD-3LWWtI-08jkyN1NJE5Xmev5egT437Rf8 2137
f9ml/nn/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/nn/gen_model_sampler.py sha256=VghGuY9Wlr2njFPM2X_EGP6RCcTQEmLPxhHTIh5EtzM 6480
f9ml/nn/mlp.py sha256=bMkgkf3SqJDyWHtHhh2vdqK0Di0clLgPQAazBmXzthI 4290
f9ml/nn/u_net.py sha256=ylWwhU9YPcMwL0ocY6D3RU1nPL5OS4nOD12OosWi86Y 2282
f9ml/stats/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/stats/binary_confmat.py sha256=y3PtFKX3T_G8CbdNrQ8sbkAb_q1PpfvUYL2jja8yMlA 2107
f9ml/stats/distances.py sha256=RMz5tC_wZDV5fXpitaKQtMTqtXtLJeCRNNZWsifDm9k 11132
f9ml/stats/two_sample_tests.py sha256=sLRBm1O9h8sjVfX81LTup2PhL2QD5zj7UCrClTTgRdA 4800
f9ml/training/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/training/modules.py sha256=4zpVQdsUCFwi9K1XjzsgX1lGxwjC1JxsGOQk3mouU_U 5372
f9ml/training/trackers.py sha256=x-Z_bwCNJ_gtEikZ6Roz2pX8tIbvXe0sEhXVkFRjjqA 2370
f9ml/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
f9ml/utils/helpers.py sha256=uL3JDLsrg89-kpjlQcyyR6yMBeXlrwwlflvzAjnHNRI 3109
f9ml/utils/hydra_utils.py sha256=m_nPu1Srmnr2jladRSTcMskzBkymjPlRim_81YDmwjI 2482
f9ml/utils/loggers.py sha256=qRWZnJ8ucXxOqSTPTWIZh7bC7TOWH-fy8KT9RThjQDo 5224
f9ml/utils/register_model.py sha256=uU-E6UG-CyFcFN1QY7dUINQlT7u-WDQwXFDKZI5ZQDw 3063
f9ml-0.1.5.dist-info/LICENSE sha256=jWH9KTf4_wJdxNLv8XzwaFz7kSDdXV8MR5FImM05WnQ 1071
f9ml-0.1.5.dist-info/METADATA sha256=dutS9gcve7oEKBJj11ie9BQEwDAX1-ezMhYYYNexmN0 2366
f9ml-0.1.5.dist-info/WHEEL sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs 88
f9ml-0.1.5.dist-info/RECORD