emlp

View on PyPIReverse Dependencies (1)

1.0.2 emlp-1.0.2-py3-none-any.whl

Wheel Details

Project: emlp
Version: 1.0.2
Filename: emlp-1.0.2-py3-none-any.whl
Download: [link]
Size: 47999
MD5: 94558ee8b823bd626dab8c366a7c31b4
SHA256: f57e5b322eb8ac662072a3ce4556b1043a2a6fa0988155b63dcdb724d3df5851
Uploaded: 2021-08-13 23:00:30 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: emlp
Version: 1.0.2
Summary: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Author: Marc Finzi
Author-Email: maf820[at]nyu.edu
Home-Page: https://github.com/mfinzi/equivariant-MLP
License: MIT
Keywords: equivariance,MLP,symmetry,group,AI,neural network,representation,group theory,deep learning,machine learning,rotation,Lorentz invariance
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.6
Requires-Dist: h5py
Requires-Dist: objax
Requires-Dist: pytest
Requires-Dist: plum-dispatch
Requires-Dist: optax
Requires-Dist: tqdm (>=4.38)
Requires-Dist: sklearn
Requires-Dist: matplotlib
Requires-Dist: olive-oil-ml; extra == "expts"
Provides-Extra: expts
Description-Content-Type: text/markdown
[Description omitted; length: 12217 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
emlp/__init__.py sha256=aHMAcW1oZrbS9VrbcTlQNck2ADeMcTwx3_0LSVw3NU8 513
emlp/datasets.py sha256=zACHgjY_j6rqaAB65s7KX4WicL8CqHXxVn964W64e7g 11799
emlp/groups.py sha256=Fc0BlY8zOI8stALikIiCf_E7sFYrSzVi4mIwbsU1i3g 18309
emlp/utils.py sha256=lBG9eBMtAOJNpfWtxcne2TXuqyvRpKbDYk2w4VDm0Yw 321
emlp/nn/__init__.py sha256=Oh0hpgwtAvvISWO7iAsrpE8CefRNVN7t7gA2U5pFuBU 241
emlp/nn/flax.py sha256=fQwKYnG7op2Uvd5f0KEZWzrAw-BTnEioLzwZcGGisms 5483
emlp/nn/haiku.py sha256=9ynFN6OL8OjGEzowU_IhyzDTLuQ13tNnQWpqX-qtbBw 4975
emlp/nn/objax.py sha256=AmGHaFBb67uQZZoFbca_NgFngkPo2Y4YjQR5S19UF2w 13706
emlp/nn/pytorch.py sha256=jM8lG4iq1xppi6TJy_Ey1StURaTFYxU7VFZFGAH5Tp0 8385
emlp/reps/__init__.py sha256=QjNDHyZXfJwMMW0WqASHGJOxr7B75Iny0tVKbhYYk4U 571
emlp/reps/linear_operator_base.py sha256=s-tYJ_9rjy4upQzC1hgq3QvmeuDB_4I_GfKOl0eqmCA 26945
emlp/reps/linear_operators.py sha256=dS4swYssNLEEVRenDlna6EAH5EAl9DM1gCQ7jyQbQGE 8135
emlp/reps/product_sum_reps.py sha256=aGKRIyYX5SYKSzqDXtOsUgyoLLJboIqCCjT3yA5JTXo 20459
emlp/reps/representation.py sha256=kceQBcBtUazF4TLZdF-03wuEz-ksbRHdf-1G4FQ_biI 21498
emlp-1.0.2.dist-info/LICENSE sha256=BrPdttaY2rMtss76CSQzEB9D_VNDqRf6hzjX2FMtDFs 1063
emlp-1.0.2.dist-info/METADATA sha256=Fk6wkKQrft9qI_S0DMyRhrmFvFB5ji3sp2FxTbrl4jw 13266
emlp-1.0.2.dist-info/WHEEL sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o 92
emlp-1.0.2.dist-info/top_level.txt sha256=CCriBhFVgeQSTtI3aQVghYlUlVWIYym_s5yqyJPlgBE 5
emlp-1.0.2.dist-info/RECORD

top_level.txt

emlp