emcaps

View on PyPIReverse Dependencies (0)

1.0.0 emcaps-1.0.0-py3-none-any.whl

Wheel Details

Project: emcaps
Version: 1.0.0
Filename: emcaps-1.0.0-py3-none-any.whl
Download: [link]
Size: 65154
MD5: 012849ca5fa3193fa5ba9b4d8afac482
SHA256: 116196db776cfe3a0139aeb6b36b21a9397bfdbcb930fd40a27a1a8d94d9bc6b
Uploaded: 2023-05-01 22:53:10 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: emcaps
Version: 1.0.0
Summary: Code for the paper Genetically encoded barcodes for correlative volume electron microscopy
License: MIT License Copyright (c) 2021 - 2022 Martin Drawitsch Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Keywords: emcapsulin,encapsulin
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Classifier: Topic :: Scientific/Engineering :: Image Processing
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Requires-Python: >=3.10
Requires-Dist: elektronn3 (<0.2.0,>=0.1.0)
Requires-Dist: albumentations (>=1.0.3)
Requires-Dist: hydra-core (>=1.2.0)
Requires-Dist: imageio (>=2.19.3)
Requires-Dist: ipython (>=8.4.0)
Requires-Dist: matplotlib (>=3.5.2)
Requires-Dist: numpy (>=1.22.4)
Requires-Dist: omegaconf (>=2.2.1)
Requires-Dist: pandas (>=1.4.3)
Requires-Dist: Pillow (>=9.1.1)
Requires-Dist: PyYAML (>=6.0)
Requires-Dist: scikit-image (>=0.19.3)
Requires-Dist: scikit-learn (>=1.1.1)
Requires-Dist: scipy (>=1.8.1)
Requires-Dist: seaborn (>=0.11.2)
Requires-Dist: setuptools (>=62.6.0)
Requires-Dist: torch (>=1.12.1)
Requires-Dist: tqdm (>=4.64.0)
Requires-Dist: typing-extensions (>=4.2.0)
Requires-Dist: ubelt (>=1.1.2)
Requires-Dist: openpyxl (>=3.0)
Requires-Dist: magicgui (>=0.5.1)
Requires-Dist: napari (>=0.4.16)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 6479 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.40.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
emcaps/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
emcaps/_version.py sha256=FrtOfsGtY3HPkXwopVTLnBRPrKexJ-VIfXoRzWX47O4 160
emcaps/class_info.yaml sha256=Xe2qfyNqgqZmViXg47woTR8fSv7Mj7PCKHb1cES-iH4 2584
emcaps/model_registry.yaml sha256=uVzKWgE3Eb9M_GllADLorBDD0XHJmrKUFKaRrGdBhBw 1388
emcaps/analysis/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
emcaps/analysis/averagepatches.py sha256=I-O4FNj1jPINTSEBGDopmNxBh5lvx2a7g_1jYxtkaWs 4569
emcaps/analysis/cf_matrix.py sha256=DHxDO34VO8pjmFrJ9JKsDbVLlla_x0IYfjCKCRZ4hQY 4989
emcaps/analysis/encari.py sha256=APuidxi8b0NucguqINnnzdLxdVQ_ASl1N8Ls_Fieetc 9904
emcaps/analysis/size_analysis.py sha256=x62nVoXA3QBT-x5NikBh6T36_M8lYqaU8_RX2tLPO8s 4808
emcaps/conf/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
emcaps/conf/config.yaml sha256=Y5-6-trXAMMciQ6SQ9dXXSAXN52dMbr7QHRWAAPRpX4 6526
emcaps/inference/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
emcaps/inference/patcheval.py sha256=0yj8L8ZlUXnYNkouyu6TLQQ9459JoMXLWCDWcWmqGy0 10455
emcaps/inference/patchifyseg.py sha256=ckoit3VrSELZSb9O9e5qV9w_EKgSCrDdLEhEKcAHem0 15731
emcaps/inference/segment.py sha256=5E_wn4VhG5RpM02AtArPAm4bc2bmq9AIqoWm2xlWfJM 20337
emcaps/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
emcaps/models/effnetv2.py sha256=39tnHSeCV7kBLZkpPmN0J1EsqOYk7gwP7doWU5aejCg 6796
emcaps/training/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
emcaps/training/emcdata.py sha256=FvD6ieuBPISk1lEU_-t73hOc4kFQsuIDDCjXGksfH1s 11941
emcaps/training/patchtrain.py sha256=yEoa90XY1SBN0SUl45ZL3uhyTzeaYRF4wn1hk28i_Yo 5461
emcaps/training/segtrain.py sha256=jCRHE5lUzHqKs_JDrWtlVwrbcxVly3AvhFbqsBjB2o8 6087
emcaps/utils/__init__.py sha256=c2CWXCHXToPPEGu7QNa1D_oFKHAnR9zjLreM2-mjQ38 33
emcaps/utils/colorlabel.py sha256=sTRHGsuoTLCE8nCn9rdCNgqEaZ2zEux37SN1gz5YIjk 6759
emcaps/utils/inference_utils.py sha256=XmxyEVpQLaEUAfxcWKClgP-aCil0-QCBvt1vdMBEhLk 15459
emcaps/utils/patch_utils.py sha256=o9-siGpQ-SLJSAqJLMx96NpgmHdyy59T9klqX6LFg1Q 13388
emcaps/utils/splitdataset.py sha256=hd-IUYggfiBAJAtGyb1T2U8kY07V8Agk57s6n0HZMZE 9114
emcaps/utils/utils.py sha256=HHGTOvmpqo37Rvz9fvqHGGmDOMH5bSqwnuEAA_stsFo 16806
emcaps-1.0.0.dist-info/LICENSE sha256=c4wpNXym8o86OOIaEU55zgyK5YoL0fCBetrCRBwPkPA 1079
emcaps-1.0.0.dist-info/METADATA sha256=fFk_x_X2dGJhcfruSP9fJnpzdU6WYHPvTZCvm_YVvcg 9023
emcaps-1.0.0.dist-info/WHEEL sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18 92
emcaps-1.0.0.dist-info/entry_points.txt sha256=7qseUwoCo_EOkkgqL5waAKyF0GSx3FBk2BdtjK3pnxw 376
emcaps-1.0.0.dist-info/top_level.txt sha256=6LD3Faz6U7U68kx2ghCMllMm5YJda4zgDYeJ0IcMSO4 7
emcaps-1.0.0.dist-info/RECORD

top_level.txt

emcaps

entry_points.txt

emcaps-averagepatches = emcaps.analysis.averagepatches:main
emcaps-encari = emcaps.analysis.encari:main
emcaps-patcheval = emcaps.inference.patcheval:main
emcaps-patchifyseg = emcaps.inference.patchifyseg:main
emcaps-segment = emcaps.inference.segment:main
emcaps-segtrain = emcaps.training.segtrain:main
emcaps-splitdataset = emcaps.utils.splitdataset:main