embedding-as-service

View on PyPIReverse Dependencies (0)

3.1.2 embedding_as_service-3.1.2-py3-none-any.whl

Wheel Details

Project: embedding-as-service
Version: 3.1.2
Filename: embedding_as_service-3.1.2-py3-none-any.whl
Download: [link]
Size: 140305
MD5: 7da4b5418556a6f3d66fda463dccc951
SHA256: cf0411f81aec699f3b458bcebd3d690de4801deadf2aa6f69dfcb4fe8f65f110
Uploaded: 2022-10-25 04:50:59 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: embedding-as-service
Version: 3.1.2
Summary: embedding-as-service: one-stop solution to encode sentence to vectors using various embedding methods
Author: Aman Srivastava
Author-Email: amans.rlx[at]gmail.com
Home-Page: https://github.com/amansrivastava17/embedding-as-service
Keywords: bert nlp tensorflow machine learning sentence encoding embedding serving albert glove word2vec
Classifier: Programming Language :: Python :: 3.6
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Python: >=3.6
Requires-Dist: keras (==2.2.4)
Requires-Dist: tqdm (==4.32.2)
Requires-Dist: numpy (==1.16.4)
Requires-Dist: requests (==2.21.0)
Requires-Dist: bert-tensorflow (==1.0.1)
Requires-Dist: tensorflow-hub (==0.4.0)
Requires-Dist: smart-open (==6.2.0)
Requires-Dist: tensorflow (==1.15.2)
Requires-Dist: setuptools (>=41.0.0)
Requires-Dist: sentencepiece (==0.1.85)
Requires-Dist: zmq (==0.0.0)
Description-Content-Type: text/markdown
[Description omitted; length: 15107 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.36.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
embedding_as_service/__init__.py sha256=7TTOTYqCUK9OWz5S0cDCVhCjfKCkmD43c2ZcDBjIS2I 4903
embedding_as_service/utils.py sha256=Dw41uXLSYpNZsoAlDM_hQyNTmHQibe0l14xADOs7koA 4505
embedding_as_service/text/__init__.py sha256=5TaG1CfzqzbeBXoUsnhk_cNwUlfWdmHo9v5ruZoenUE 324
embedding_as_service/text/encode.py sha256=xhqDIVtHIA4l8KbnUd-CzCz6aos6c9SvdZ8SVu7SR-4 5297
embedding_as_service/text/albert/__init__.py sha256=I00j9d9JQhAZDO46QuFH9Ue4JI7oe3emNLCaM7e4Tb8 8047
embedding_as_service/text/albert/tokenization.py sha256=deEYVe-ceEgYIt2rcY321fv7VaD3kAwCSLBOuzKg0RA 16969
embedding_as_service/text/bert/__init__.py sha256=-aaPcPrrG_mrLBJq6vtGchHRUuHG1SK2KY9sL2hAW3s 8469
embedding_as_service/text/elmo/__init__.py sha256=c4wNjEz6ClprgV_YEf0tFFJB_PIUNV3ZWWomcfG6FJM 3466
embedding_as_service/text/fasttext/__init__.py sha256=Jnodp6RvGJrxcZyF2epbEkkVuhwjuBQXozymUtl2m7U 4413
embedding_as_service/text/glove/__init__.py sha256=LSTzZUe8igiGL-GIXvbqSTMVgqElg5LQGs-mfArxVTc 6869
embedding_as_service/text/ulmfit/__init__.py sha256=DomYnnYV3oQQ3p9X3KuGQQ4AxrMViV9Gkw2HXn_32iY 3506
embedding_as_service/text/ulmfit/model.py sha256=0FI3iAYEZyPISQKM4yTWUjE_iDODFtubQRet0vtOjQE 2092
embedding_as_service/text/ulmfit/custom_layers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
embedding_as_service/text/ulmfit/custom_layers/qrnn.py sha256=YabbQcjeAmRHoCgbnovzylplG9EAniCKtBTW4LpcBrg 14031
embedding_as_service/text/ulmfit/custom_layers/tied_embeddings.py sha256=NWh3tAAFKBxFl0KtN4Rr73hwX6D0zSEdIuhGBqmu5dE 1634
embedding_as_service/text/use/__init__.py sha256=rwbnYVDCkvzAuefRGBvc_y441Mw7YTbsKyVDMt7YC9o 5447
embedding_as_service/text/word2vec/__init__.py sha256=pyqs7Cui2hOlypGyQdVE15FXkZYo-2Iyp0Mjj7m5nyQ 4028
embedding_as_service/text/xlnet/__init__.py sha256=XeqLwm0Ik7VeKpGNLaPXrTj-aQbNmpARVx90WHcOXx0 6603
embedding_as_service/text/xlnet/config.py sha256=iqfdt26kKawvX7-hiYvwCXr73dtXyetZOatlH4a-yF4 3533
embedding_as_service/text/xlnet/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
embedding_as_service/text/xlnet/models/classifier_utils.py sha256=pqQyxQp_u9gyUil00pKTo0mj08H2fHZRDBbfBuSYCIk 4533
embedding_as_service/text/xlnet/models/data_utils.py sha256=IXVv4TJ67w_QBXWzrq7UybUTgFR1edHVUJlstNx1dYQ 32460
embedding_as_service/text/xlnet/models/function_builder.py sha256=qxVWS1MRGliE8Q7HeSJKKvDXNFgzGsCTsELs2FRVJkk 13569
embedding_as_service/text/xlnet/models/gpu_utils.py sha256=36B_XXiJs3okPdgZDjHkGIgZXL3Azp8rUbMQx5r5au4 2359
embedding_as_service/text/xlnet/models/model_utils.py sha256=KHeDTXx6-TD4qNvLWh7vUqAgo1MC6WR7MzHP7piAUdA 14078
embedding_as_service/text/xlnet/models/modeling.py sha256=7d5Q7d5bG902ID0RJYuoCkzr8wJmrKuuxNmF_T0xcP0 28460
embedding_as_service/text/xlnet/models/prepro_utils.py sha256=u5h9Q-zl1xj7PYoLTclU6KJDN9Ee2UUGRZ4T3GrFz0k 3931
embedding_as_service/text/xlnet/models/run_classifier.py sha256=iHgG8XNNtwbTBbF9kfIpJ6BTsrJMBxGcZbIoxjs2qGk 30203
embedding_as_service/text/xlnet/models/run_race.py sha256=D0TqDDuGWBugpx5jjRtpIPc9zztSm5O-_SA8PSQ93EY 18900
embedding_as_service/text/xlnet/models/run_squad.py sha256=zGNHyVkIlhPkkcSOKPtK9vdfBJ2Kw9oG1Iwdt1ZyVww 46028
embedding_as_service/text/xlnet/models/squad_utils.py sha256=92i2jJutCppcjzttbrRjTq9tClsqUXl7oQ5ecU3XAZw 12252
embedding_as_service/text/xlnet/models/tpu_estimator.py sha256=Mt0Iz4o19L8ft7nCdXPPUh2dmQYjMR4120Mk-RDSXY4 138972
embedding_as_service/text/xlnet/models/train.py sha256=SvLVuKPZxUMXH607FCrvhpl9DdmbLMBAKmm7hG9Nuho 9660
embedding_as_service/text/xlnet/models/train_gpu.py sha256=XhJt2edLaQGYp7Gk0y4RPgp-oLIbjQuvp57lJu1ihKQ 10979
embedding_as_service/text/xlnet/models/xlnet.py sha256=QatKO6yovvO8_e-cfN4kU1GQrz6gPe0c7u74-JlscVM 9878
embedding_as_service-3.1.2.dist-info/METADATA sha256=dat6NCOPonPAURgcqZnqnHo1cT3HX9zCia99ADJcBaw 16238
embedding_as_service-3.1.2.dist-info/WHEEL sha256=OqRkF0eY5GHssMorFjlbTIq072vpHpF60fIQA6lS9xA 92
embedding_as_service-3.1.2.dist-info/entry_points.txt sha256=k1Msxt4zZ-ehY7_CAJMPiP-k_AFSIeqfrOlvzb0dx10 74
embedding_as_service-3.1.2.dist-info/top_level.txt sha256=qKlrvJhTgS0eIrm-yRDm0paqakIwGHsQ2eBZOOPh1is 21
embedding_as_service-3.1.2.dist-info/RECORD

top_level.txt

embedding_as_service

entry_points.txt

embedding-as-service-start = embedding_as_service:main