docproduct
View on PyPI — Reverse Dependencies (0)
0.2.0 | docproduct-0.2.0-py3-none-any.whl |
Wheel Details
Project: | docproduct |
Version: | 0.2.0 |
Filename: | docproduct-0.2.0-py3-none-any.whl |
Download: | [link] |
Size: | 60835 |
MD5: | 33ab5adebae87ba103963ed0bbcef5d4 |
SHA256: | 1a905411612c8af0d11237c8d859000691ab0e217a4329c160e05292f0bdb93a |
Uploaded: | 2019-06-06 03:10:16 +0000 |
dist-info
METADATA · WHEEL · RECORD · top_level.txt
METADATA
WHEEL
Wheel-Version: | 1.0 |
Generator: | bdist_wheel (0.31.1) |
Root-Is-Purelib: | true |
Tag: | py3-none-any |
RECORD
Path | Digest | Size |
---|---|---|
docproduct/__init__.py | sha256=pLpWEopSaPFqq--n93MztqX7sV_ByUD6YKEOuzhdWak | 520 |
docproduct/bert.py | sha256=1rlt1zRhDWoDBcUNTiWnGEpVmj53jZHKnR9mMXRPljU | 8156 |
docproduct/dataset.py | sha256=VN3aQz61rjsTqnTAbRmMRWYdk8rVJvwsVPhzG6Da5d4 | 13856 |
docproduct/get_data.py | sha256=j2Tw-Upo4rQZT9IG6A4Y-IHm9E03QnSozWrAdBGB62o | 2200 |
docproduct/inference_GenerateQADoc.py | sha256=3lZVziytkr90AuMvTVdFY7oFHNj7f3xH4PngtqWKRT0 | 687 |
docproduct/inference_question_to_topk.py | sha256=iGNwG7iNDOa4v5BcicZeXrA2T4SmbRfjVTsULdqHzpI | 686 |
docproduct/loss.py | sha256=hx_xO1tQ3CbOJILJLw1Zd0gFGmXxXOluFrMAJqr8rtY | 911 |
docproduct/metrics.py | sha256=pD4scHOanFQiucZJLhlvgdd2xre2LfFKFqhXQn8qfqs | 432 |
docproduct/models.py | sha256=utVa0-1hvODwRPFXupM1u7mqk1eihW3ocKXkgUOhIFs | 4143 |
docproduct/mqa_load_dataset.py | sha256=blHSxWYxtxoPFrslzfr12jjKPaXJS94gEAEtq-T5WPI | 5009 |
docproduct/predictor.py | sha256=G4jZXWMeGQXak4fymYIwu66mR_S6Jn-_d5Y8EPRvlr8 | 11891 |
docproduct/tokenization.py | sha256=KfVNZyHLv2VLpwFBE3hXxrVR7WomOXe748R8ERU90cc | 13528 |
docproduct/train_bertffn.py | sha256=Z5fIuzMMDgUj-wX7lqLjFtlG_EjFfpyuIUwc4v9AcK4 | 3435 |
docproduct/train_bertffn_estimator.py | sha256=k5ODkqpwA4DB__-1wHUfl5PUqUetFdT6Oag1aUSb01g | 3662 |
docproduct/train_data_to_embedding.py | sha256=NDZ-9Ox49069DQHf6tOWMjlX6S-xfGz9VJpk7m90pWY | 2613 |
docproduct/train_embedding_to_gpt2_data.py | sha256=WWyvaRCcIBjw430KPI3z2JnDDO8_O5FfMSKybJivQ70 | 3335 |
docproduct/train_ffn.py | sha256=Fok9l-R8X1AzBeny7u8IPd7QoKMOQ4s6MhOXTp6XwR0 | 3725 |
docproduct/train_gpt2.py | sha256=8tGZOfZqP1t3TyCK2i471N5DFqKBQ_revToYwmYBG08 | 3415 |
docproduct-0.2.0.dist-info/METADATA | sha256=pHmA31_eVNDYrZvFECObNQB8UyIQLjntMt_B3XNkXP4 | 908 |
docproduct-0.2.0.dist-info/RECORD | — | — |
docproduct-0.2.0.dist-info/WHEEL | sha256=NzFAKnL7g-U64xnS1s5e3mJnxKpOTeOtlXdFwS9yNXI | 92 |
docproduct-0.2.0.dist-info/top_level.txt | sha256=gE6NVIuYI5kbTYt5XguK3V95NdnYCLJokgfmHwd4vLA | 22 |
keras_bert/__init__.py | sha256=XOWtpmjOD_us-U9c_prhFJTHH1BKmd2yQEmhKt6yGXk | 75 |
keras_bert/bert.py | sha256=JMi0pSjwuLQwryfEVbQo9cLRQORFw5szRGVCtOuCmis | 15363 |
keras_bert/loader.py | sha256=S5YV0k7PXDJcmIPuWwiDmECT_5j3kWmnNAnbosJPz8Q | 6959 |
keras_bert/tokenizer.py | sha256=QdY8rZfjXLysbB7T9urtDSa8bOejoKLPrZUJ5GHhTMs | 5346 |
keras_bert/keras_embed_sim/__init__.py | sha256=DOzYHGc6pA6lWfQ4UBAtTeaEJvT8SZOaj2ptqpmwYGw | 26 |
keras_bert/keras_embed_sim/embeddings.py | sha256=bkAnArHZUz178Ui2my1gpBWHS6K2IR9o7LH-RPH10_M | 3278 |
keras_bert/keras_layer_normalization/__init__.py | sha256=1QYjS-oMiVL_qTyU1BturuLwVKktPhhrRMNwtLGJ0fU | 52 |
keras_bert/keras_layer_normalization/layer_normalization.py | sha256=E4rUmvr6em3ISp-Ot0m00fDSZzQY3cY8ugS9FZiDX2I | 4138 |
keras_bert/keras_multi_head/__init__.py | sha256=9N9DHMT3C25xb_I301N30_S6bVFYlicOa9iC8ge_e9I | 87 |
keras_bert/keras_multi_head/multi_head.py | sha256=a_EfMzndeKuxr9u-OKJInCmXWudm4arYNI54tiYgvmo | 9048 |
keras_bert/keras_multi_head/multi_head_attention.py | sha256=bjCbsmrFnO4UHR99VBwN0i8F2f5Q31jXOkbo4wOHdFk | 8773 |
keras_bert/keras_pos_embd/__init__.py | sha256=E5MvoPrXMVtTys2rpRMiJ4HkAJxE3c-2LRAeZqi1W6E | 84 |
keras_bert/keras_pos_embd/pos_embd.py | sha256=KfnCW_4foEOt-u9TwgDVH2T5dueNb_nnDtzEhwo-h9Y | 5504 |
keras_bert/keras_pos_embd/trig_pos_embd.py | sha256=QnN4mjdWg7lbiQ0phLfsR5GXDB0Fxu_mK1sckGgB4ec | 3981 |
keras_bert/keras_position_wise_feed_forward/__init__.py | sha256=U4Ktc3WED17HEFnM-NpS9MS1-7kxpgIqRI4ozdl5Lbw | 38 |
keras_bert/keras_position_wise_feed_forward/feed_forward.py | sha256=wk1GLfXAvX17YJWztmgtqffORBfSpKXjzM1cViDyu4s | 4566 |
keras_bert/keras_self_attention/__init__.py | sha256=2MQUzdUUiPj6Biedc_b7hadn6CuNB-jyiHsTip0T4bE | 166 |
keras_bert/keras_self_attention/scaled_dot_attention.py | sha256=Fsy54l0_9BPbvUjWGpyMbShvu3GmdQiWdVIXYjlIMLI | 2888 |
keras_bert/keras_self_attention/seq_self_attention.py | sha256=EyLgg1suvxSyX9NYTNWLDT7XMbv7nsQAeUsMzoeewP0 | 12204 |
keras_bert/keras_self_attention/seq_weighted_attention.py | sha256=LtCme9i6-bvSCGkbF_H3FYn353LTAxHOLPUdxoBEHQk | 2461 |
keras_bert/keras_transformer/__init__.py | sha256=pHQLzN2VK-GBIHjCFtcJr01R34mGrwVXDj1etlkppWE | 50 |
keras_bert/keras_transformer/gelu.py | sha256=DKHWpkJv0qKXS1MvQ92xhLV6mqtWyp5UWvJIPyCJ9iU | 245 |
keras_bert/keras_transformer/transformer.py | sha256=GyKBwapelGYzWZ-BJIc-HQHCjNaXghdMBifV1TmYjXk | 17659 |
keras_bert/layers/__init__.py | sha256=v8qbeORm4XSRmcOqouQgdExPW5rY1axzNxmVdzMzlYk | 235 |
keras_bert/layers/conv.py | sha256=1MFXORrNH_J0cURWxRpsSddUehWz5pbyMhY7qNktH6Y | 520 |
keras_bert/layers/embedding.py | sha256=gN6kTlxa1padSuPAx21PHFgBkCJjn54ZNPLWHhwqttE | 4374 |
keras_bert/layers/extract.py | sha256=to2HjjcCnYMFgK8tr-vY4LF_beoXHK_RgZHqWCwl3eg | 751 |
keras_bert/layers/inputs.py | sha256=OXONh7IYjAClS7ZrCGQHnob3O1xWITHXUgxm_0-TJXw | 344 |
keras_bert/layers/masked.py | sha256=wVDL3DDWPRkcOfZd3zjrHFuJfBTsQiJc_mAoSTkWw9E | 1425 |
keras_bert/layers/pooling.py | sha256=CVlK2cWQ35_j5wYsStrfBckclnRf1SqDCTgSJm5Niec | 638 |
top_level.txt
docproduct
keras_bert