dnnnlp

View on PyPIReverse Dependencies (0)

1.1.4 dnnnlp-1.1.4-py3-none-any.whl

Wheel Details

Project: dnnnlp
Version: 1.1.4
Filename: dnnnlp-1.1.4-py3-none-any.whl
Download: [link]
Size: 18344
MD5: 0552b2fb489ea97a98d280f0a80ddd93
SHA256: eb03c41ff8ccdb592fc2de29a3b885a5e56e8e214e69a6256348dab29401d408
Uploaded: 2019-10-29 07:50:06 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: dnnnlp
Version: 1.1.4
Summary: Deep Neural Networks for Natural Language Processing classification or sequential task written by PyTorch.
Author: KzXuan
Author-Email: kaizhouxuan[at]gmail.com
Home-Page: https://github.com/NUSTM/pytorch-dnnnlp
License: MIT
Classifier: License :: Free for non-commercial use
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Requires-Dist: numpy
Requires-Dist: scikit-learn (>=0.21.0)
Requires-Dist: torch (>=1.2.0)
Requires-Dist: torchcrf (>=0.7.2)
Description-Content-Type: text/markdown
[Description omitted; length: 8308 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.33.6)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
dnnnlp/__init__.py sha256=gy1A76ALxwYNBb1a-SvINku_5avS0rYRE8E62BCkaWI 866
dnnnlp/exec.py sha256=-xfUtfUHx-bngnZqOp0tWsC4v303YbRDC8eSi_kx9ZQ 19938
dnnnlp/layer.py sha256=oSMkSoRtieFAZXVKUP_2kssMGtUupJQyPMreqDyz8Oo 19047
dnnnlp/model.py sha256=7jL0xQ40MKKKFxCLFksdZjjlPQDSmQ3X0psAwt09ut4 8767
dnnnlp/utils.py sha256=7lZhPUfzcA1D9ciKMzMt5QdO0bj0ykkr-vrB-Rz7wfg 9820
dnnnlp-1.1.4.dist-info/LICENSE sha256=U_417WC_hAh9eKSgoOXSO7XjnpNI_zLNBSQgoftxf_Q 1075
dnnnlp-1.1.4.dist-info/METADATA sha256=A4qElOKy7psMRdSS2YucfVmsXZaDY8FllhUBpzIEvjs 9095
dnnnlp-1.1.4.dist-info/WHEEL sha256=p46_5Uhzqz6AzeSosiOnxK-zmFja1i22CrQCjmYe8ec 92
dnnnlp-1.1.4.dist-info/top_level.txt sha256=Vn71MOE2wPaQCxzstRqFf1MULvVNGz7IYs0KmqpFr-8 7
dnnnlp-1.1.4.dist-info/RECORD

top_level.txt

dnnnlp