dnnlab

View on PyPIReverse Dependencies (0)

2.2.5 dnnlab-2.2.5-py3-none-any.whl

Wheel Details

Project: dnnlab
Version: 2.2.5
Filename: dnnlab-2.2.5-py3-none-any.whl
Download: [link]
Size: 118852
MD5: c56ee3a0abfbad8b45b560cc0533beba
SHA256: 2acb168ea6a18117a77090f32f5a56111742cce0745b7c746b36a6d23b35ce0f
Uploaded: 2021-12-03 13:38:44 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: dnnlab
Version: 2.2.5
Summary: DnnLab
Author: Tobias Hoefer, Kevin Hirschmann Frederik Weishaeupl
Author-Email: tobias.hoefer.hm[at]gmail.com, kevin.hirschmann[at]noventi.de, Frederik.Weishaeupl[at]noventi.de
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Requires-Dist: Cython
Requires-Dist: numpy
Requires-Dist: pycocotools (>=2.0.2)
Requires-Dist: Click (>=7.0)
Requires-Dist: opencv-python (==4.4.0.42)
Requires-Dist: imgaug (==0.4.0)
Requires-Dist: matplotlib (==3.3.0)
Provides-Extra: dev
Description-Content-Type: text/markdown
License-File: LICENCE
[Description omitted; length: 773 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
dnnlab/__init__.py sha256=DMGdxcjL8fOpRcpTWSElsQ_rDpMT50ttYEB_qfh5cC8 1027
dnnlab/adversarial_attacks/__init__.py sha256=K3VEml5xHip0EmAER1Fsx3c7Opt_yrywVo5GIfXG-9E 733
dnnlab/adversarial_attacks/images/__init__.py sha256=y3Ywlhy0pRIOkUgDlrRgJjkqqsEo4yA26mD0yPAQogI 754
dnnlab/adversarial_attacks/images/fgsm.py sha256=ie1sEEJQ-P40SqqJSG7KeqXzvace9ucUU-eyYU53UlU 4872
dnnlab/callbacks/__init__.py sha256=0fIRz3d35MU2Jm0OzTU7eyyQG_whuv5KAfSLaXg7TG8 776
dnnlab/callbacks/tensorboard_imagelabel_callback.py sha256=1td6PCXicNbOiRA0PhnbctFY3CSIqgGxKLjdS2St8ec 8862
dnnlab/errors/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
dnnlab/errors/dnnlab_exceptions.py sha256=oaDMcf1i9bAo86M0vNk_Gwh1brnRqg_ElbR7zWL6GDs 822
dnnlab/generative_models/__init__.py sha256=opPGi6ei2FwUQRjA8AoKS0WePL0TSHp-hZGxOX3sqbc 729
dnnlab/generative_models/images/__init__.py sha256=1-CdkrpADPk0Obl2xqs-oSejBv-ODnsLldDQCdgoDes 865
dnnlab/generative_models/images/cgan.py sha256=MWL2u_edK47yGuJgOGbtVu0xvBG_a4TMbH9LhC6q7oc 18637
dnnlab/generative_models/images/cycle_gan.py sha256=E7Mwkg557KfBM9ZvKbADQrpc4f-QZiWHYh_uMOntL8k 25265
dnnlab/generative_models/images/gan.py sha256=_zJpf3HDomvmDFI1dAkJ7zEf-etfrfJd09-CPSvfR_M 23266
dnnlab/image_detection/__init__.py sha256=nkbZgZRcxpi_67cH-IOV6J0hJPqgYXDny_bZLYOK96I 735
dnnlab/image_detection/yolo.py sha256=cCUAviTx4DbFLNlXXUO_lA3IAEZ9wm7lwFi5PutqKVM 39742
dnnlab/image_to_image/__init__.py sha256=jknNjbY7nn_LMu9KykPXm09Bq5Xus5mOo6YytlRqMMk 730
dnnlab/image_to_image/nn.py sha256=hVQ8bMCcFwjosEmtWHgyEUItLjEYR--34DuIVUVrdtg 19393
dnnlab/input_pipeline/__init__.py sha256=CLGBmR6sLLNyjEJkpDeSJ00sfr_949LqgFxz6rTwgXo 960
dnnlab/input_pipeline/img.py sha256=Xzs_MRKWtlU4f8j6hDhaopcqjS6Z8UGcfVJn6keMr6Q 3324
dnnlab/input_pipeline/img_img.py sha256=O2Vbm0WiE1YdtGOdK1p3J2UUvjr27nXxIuWyxghFVTI 5315
dnnlab/input_pipeline/img_label.py sha256=h-Y8_fHK-NGoOZoGnuyg7nlJrX12-H8zQy0jMGVQA3s 5160
dnnlab/input_pipeline/triplet_net.py sha256=PRnkRE_J06rDkF69LdDK6VGiJDNW9KYvxh8OQIlXhcM 7320
dnnlab/input_pipeline/yolo.py sha256=TBTkyRM3zXsjsB9eX5F7OM-QXFFAPVYT_ytmfW69rKg 9638
dnnlab/input_pipeline/augmentation/__init__.py sha256=oD2n-xsIhwXKiJr91VkZZeGNadcKuDXf-t0dD0YO9dU 888
dnnlab/input_pipeline/augmentation/img_classification_augmentation.py sha256=HKppNZ_raK1Qw3I7MCUulsmoI_u7Eq2MQ3NebZl37Q0 14764
dnnlab/input_pipeline/augmentation/yolo_augmentation.py sha256=scPZwqO6lgLFOBPBDNuCMWijRddPWj-PNWJoqGnaWTE 11167
dnnlab/interpretability/__init__.py sha256=C-yU2LyaTNn0tbrzALZ93swVq2vOwE8hBLQcY7ET4cs 737
dnnlab/interpretability/grad_cam.py sha256=B-6TGArnHspk6WByner76tw2DjsiHvpChwT5r31rp_g 9333
dnnlab/layers/__init__.py sha256=eKEnRHkWwhtjQM48W02Lp69KvszvPVGePBy3p_FO8PA 884
dnnlab/layers/non_local_block.py sha256=0WR7S2gwlKtYBLIGz5oInjgW0lL7--5LvqZsR0OKNMI 5998
dnnlab/layers/preprocessing.py sha256=dyphX2xgD1kARApekRMVSL0xjOHE56QuJknxFasBCxI 4981
dnnlab/layers/se_block.py sha256=8BBA8UfHR4pm4R1BbtbzO8_3Wy1Nubfjqk7oU8olZno 2288
dnnlab/layers/yolo_decoder.py sha256=7p91b8c9h6JDqiAaFKZqCoVoO2tkwpRX72k0lbWAs3U 10154
dnnlab/losses/__init__.py sha256=XmEZ6pJXod1ZnHSMBMyM6c2zjEbji0bE34sNaKWAs9Q 898
dnnlab/losses/ocr.py sha256=cXP5ch-Zi9UTpGgj6giniIDy80pROB1KwiEsheeJUno 4263
dnnlab/losses/yolo.py sha256=XT_WK5HaoOo8BWpuhKEBDZ4bGs87uOtthjE4PqHt6mw 16237
dnnlab/losses/triplet_net/__init__.py sha256=IltIydvQVznrOOn96mtdWW9TTh7uzQf9CgKVkeQa0Ak 892
dnnlab/losses/triplet_net/triplet_loss.py sha256=cpCiIuE79Ni7kjfSMlF0MrZwSS15YZvzOE4Kb64lseQ 4353
dnnlab/losses/triplet_net/triplet_mining.py sha256=htcL38MqeqpJhbScpDwQRU-LPsupTbPRyaNe03qJy8g 14623
dnnlab/metric_learning/__init__.py sha256=Q_WGlz0g5jV-e5MIYQ-te-TwKt-oFz4xj6fnvMCrIoY 891
dnnlab/metric_learning/knn_classifier.py sha256=0TwCNKfgT3-HYSn_KAfqq4NyuVVNGn2KK2Mm86goJjM 3802
dnnlab/metric_learning/similarity_attention.py sha256=-78PgT57MvYJBzA-yg6k6yhnv6zDnf6iI3WRCL99Z-g 13863
dnnlab/metric_learning/triplet_net.py sha256=QGcw6fUzIqOiMEBR5f8tuRag9daSr_F4-oIBCaDC5CE 36471
dnnlab/metric_learning/triplet_utils.py sha256=tz58JgKEYQGdmXos_J1FhZHm0wJxmahzo5U1AZeL0e8 3500
dnnlab/utils/__init__.py sha256=N07VgW7LMdzCH3tQAYlIh1fM7yW1fc5KvrvqFmDbEjY 773
dnnlab/utils/coco_map.py sha256=RNHaLj_eHUYmFjA8wOJ6MRwUiuv53M96O3i_x4Gw2cs 10075
dnnlab/utils/gpu.py sha256=OgVtjqkzxk6aIG3qU2KGJ5Yqrs-KPTxILEpFiKmGEDU 1303
dnnlab/utils/performance.py sha256=2E2VT55vAhjyoMAE_h27S9Kl0Mql-Xa4hCIOX3LEPb4 1728
dnnlab-2.2.5.dist-info/LICENCE sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE 11356
dnnlab-2.2.5.dist-info/METADATA sha256=VXQqGulzqDujSPDFkLRVdB-LnjlaABow3VHIkpgbO9Y 1568
dnnlab-2.2.5.dist-info/WHEEL sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o 92
dnnlab-2.2.5.dist-info/top_level.txt sha256=XuhkKiRkEsxW-u0pySvg3ZeJMZcc8fYLge590mfTlPc 7
dnnlab-2.2.5.dist-info/RECORD

top_level.txt

dnnlab