df-analyze

View on PyPIReverse Dependencies (0)

0.1.3 df_analyze-0.1.3-py3-none-any.whl

Wheel Details

Project: df-analyze
Version: 0.1.3
Filename: df_analyze-0.1.3-py3-none-any.whl
Download: [link]
Size: 161964
MD5: 07cad0de22f448fe54e35c2263af1528
SHA256: 8ed2acf0b7596d70b9d98703500225baa7cd3a6239947d15f9fc9679c129d411
Uploaded: 2024-05-21 02:27:01 +0000

dist-info

METADATA

Metadata-Version: 2.3
Name: df-analyze
Version: 0.1.3
Summary: Add your description here
Author: Derek Berger
Requires-Python: >=3.9
Requires-Dist: joblib (>=1.4.2)
Requires-Dist: jsonpickle (>=3.0.4)
Requires-Dist: lightgbm (>=4.3.0)
Requires-Dist: matplotlib (>=3.9.0)
Requires-Dist: numpy (>=1.26.3)
Requires-Dist: openml (>=0.14.2)
Requires-Dist: openpyxl (>=3.1.2)
Requires-Dist: optuna (>=3.6.1)
Requires-Dist: pandas (>=2.2.2)
Requires-Dist: pytest (>=8.2.1)
Requires-Dist: scikit-learn (>=1.4.2)
Requires-Dist: scipy (>=1.13.0)
Requires-Dist: skorch (>=0.15.0)
Requires-Dist: tabulate (>=0.9.0)
Requires-Dist: torch (>=2.3.0)
Requires-Dist: torchvision (>=0.18.0)
Requires-Dist: tqdm (>=4.64.1)
Requires-Dist: typing-extensions (>=4.9.0)
Description-Content-Type: text/markdown
[Description omitted; length: 42098 characters]

WHEEL

Wheel-Version: 1.0
Generator: hatchling 1.24.2
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
df_analyze/__init__.py sha256=3OrcE9q7GmRe3dPz1piOGDrDksDOK-qHPGyua9HLrBs 107
df_analyze/__main__.py sha256=CY3ZDZEeGzVpIH42HmGvyRHV-ajqTQwQku9fIJMbB_w 59
df_analyze/_constants.py sha256=oR7OHMkpwpy_tlXHe45IAN5iVK_epXnOzytoyjk82jU 6054
df_analyze/_main.py sha256=h3sLlZXINvnkJ6FFqdOfb1HOokWnZ4-39nq6SZ0aObs 5441
df_analyze/_setup.py sha256=WDItRvVeCw5q_kWetv_l5uR8VvGjIYpgrtXs6DLhkEw 2126
df_analyze/_types.py sha256=TAJ38D1Xu5r1z6ioLswNAAQOKjU3mQKKpSDmaEkbix4 1005
df_analyze/enumerables.py sha256=B3K1St8iGH2e1KRFNz4bm73dy6ZTb0lUmbyUEEznWrw 17108
df_analyze/feature_selection.py sha256=Hr0AFHQnD7HuewlZHNsoJfRG0f6lFvIBiAx2tHOexHI 5738
df_analyze/hypertune.py sha256=OGqfFQgQnnUMVC4hgKUjJFecq-Hpn7gyvIZDYkUHoxw 30284
df_analyze/loading.py sha256=2F_Exg_WKv8BgS5iuYDhFtLdoszTwVrIGA5_OqBiWI8 2955
df_analyze/nonsense.py sha256=6KWNUmON7cWFZ3hnbVfGq15XJetLeCxe877kl672SSQ 451
df_analyze/saving.py sha256=ZNeWHdXkuCIrzuJLM381EHnoL1fOVYCI5NoRn-_AKDI 16854
df_analyze/scoring.py sha256=br66FWDoOqZp3xeEYnX4WZRBA6vRlo4ITqTclWYu-T8 5629
df_analyze/timing.py sha256=BKFjev7Fe3AoEJxhbNQDeEZGOjxYDIZZF6sUHPolHo4 363
df_analyze/utils.py sha256=hK5-Gbx9dvFbxpQMKTMoDeuGQ_T1XWqiCyLbqbnWiYI 237
df_analyze/analysis/calibration.py sha256=uWaSupVglTSvDE0Wi25sdqOvH2bXmPOSyJ-DhSPBCC4 14264
df_analyze/analysis/metrics.py sha256=6ELshAYYyq2F3JcePZzzqiNhrgNUy78DEJ_gavexrKQ 1738
df_analyze/analysis/univariate/associate.py sha256=LDaIDgkwiQJE3LvcLbcsGfc99VElApZkAZ02bQAaPn8 22603
df_analyze/analysis/univariate/describe.py sha256=sdwyIHjI6HSagjS4EOvWOghem5cdsZ2ONDQUx9u_RtU 4811
df_analyze/analysis/univariate/predict/models.py sha256=gz23Go3CdJUS5GF2_pU5uSswUXWhEu-p_7F7cPOGZZo 10406
df_analyze/analysis/univariate/predict/predict.py sha256=3fa1Si9qcIg7MHC3w9Ae9QaOOCbrFfGhVmXCjwEU_X0 11103
df_analyze/cli/arguments.py sha256=k6gPdxBODFi9xV3zizBvIVCS2eNfnSkkIVCO6-7lSPE 1428
df_analyze/cli/cli.py sha256=k56dCIf0_4hCWDPKphTLi-BkXOCN02IjpA_ioMOk5rc 41283
df_analyze/cli/parsing.py sha256=oVMBNzQXR-Vzwjx32q1WcVRgeWp7vIyr6q2IBU2lyPs 5069
df_analyze/cli/text.py sha256=7x_IXzng-xXDDj-vj2IAFCinc0ss76f5h6VUW9ou5PA 25145
df_analyze/legacy/src/classifiers.py sha256=mugy3imfhyHsErY3ifeGzaFs2fq2fpfK0LaMvgwJ-gA 1017
df_analyze/legacy/src/cleaning.py sha256=PsUSMb7p4K-YwggAcBNC8TBjLLOwxUVsk2WY-TdOgrk 6949
df_analyze/legacy/src/objectives.py sha256=0nZZ1dJOKu5Krphwhxbn_mbCFrTEm_Vn4qp2-mJH7QA 16798
df_analyze/legacy/src/regressors.py sha256=mKHHmyRMoWSnnlVCsuXenbwnlaopgUszNIdTIl-0mF8 910
df_analyze/models/base.py sha256=hG4fMsriDeewnmOrwsREaAgt2gN4F4X7zfCD0YvuRW0 16797
df_analyze/models/dummy.py sha256=zYTRQr6QyxH9FC8iR-5lLIFlVRte-r6jzrkgE5RHv48 2058
df_analyze/models/knn.py sha256=6SbI9cAJpS_kH4bsTT0K6IXW99CsEjyiSeC1EA_bWHo 3103
df_analyze/models/lgbm.py sha256=JBSBC1v-F8AMkTus6HHQPInfId-OGeDdNtezu846fN4 5077
df_analyze/models/linear.py sha256=xNm5AyYSghNPq7l9hTzzegmDPrubOEm_TihE4ksC3jg 6404
df_analyze/models/mlp.py sha256=kQwyR_rlolqGn3rb_bKMWDjgY9Au2kt59i7YOOulGZM 19681
df_analyze/models/svm.py sha256=eEfdr2zGvQQFKdr3MgE4_cBgpbJ_uL1_ICr721ScpTc 3074
df_analyze/preprocessing/cleaning.py sha256=Uh6FV4v0-JSBB4bZ_jiKpxmGezfyFYOPgeFt5e65iXM 26029
df_analyze/preprocessing/prepare.py sha256=BWK3-IVJ7fZ9A7RGDZMbOeC15wHfwPG_2zMq1SNnpMk 16744
df_analyze/preprocessing/inspection/containers.py sha256=oS9xDvrUcSA0BilE-JknwXuG4UQVtZhm5Z7A3saz0ZU 16278
df_analyze/preprocessing/inspection/inference.py sha256=HL78guK5GbPD7YpQsVblBiuEs-kTv3q58SIDfpKp1ZM 20305
df_analyze/preprocessing/inspection/inspection.py sha256=YpOccz2mQ3A3i6C-meeW9jfX_mxRVlfdAwZZv5cwSc8 26686
df_analyze/preprocessing/inspection/text.py sha256=9onY62Vn3x53i5b1gbkRdfhI87isamzjgtgYbGLkoyA 13387
df_analyze/selection/embedded.py sha256=eYPOFCNQiZa_aJ9I9klCxp3P0nHAB2dSO_k294-ZzXI 4866
df_analyze/selection/filter.py sha256=XgUei3oxnM_p1E4Pbpjp1Xl3XSzycGZtlxBICuNKUuA 13801
df_analyze/selection/models.py sha256=f79nCRQFRfho6g2nVpuSEHL-uU2WmSxhKUjLpTbuoQg 2270
df_analyze/selection/stepwise.py sha256=io_g2p6a_SMc6L2MmXozhQNR89KaT5edAfjWZT0B8x0 11378
df_analyze/selection/wrapper.py sha256=hw9BpIJhNYqplJ3n_rAxAnrh0hfRVAAs32cx8eD5iNM 5065
df_analyze/sklearn_pasta/_sequential.py sha256=pBMfjpTlhj-8Rm3_49iRSs8rvCnG25bmGO5uiMHGjFA 10433
df_analyze/sklearn_pasta/_tags.py sha256=dt3r7baK1SXkQ1XCfYIoa8iZ6pMkoQVPUN6kCHBN4fQ 2190
df_analyze/testing/datasets.py sha256=7YG1gZpVQj7OGcgu965Nb4hZ5vgQPLsgRMfC7vYHXiE 15635
df_analyze-0.1.3.dist-info/METADATA sha256=4APTpm85QU3KwArCcek3KDkBcuAeLQoLfNNE81fuzYI 43784
df_analyze-0.1.3.dist-info/WHEEL sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU 87
df_analyze-0.1.3.dist-info/entry_points.txt sha256=qHXW3wVtLlyTIG-YzV_czgFsLsFb4zGRefnszJZyXsg 47
df_analyze-0.1.3.dist-info/RECORD

entry_points.txt

df-analyze = df_analyze:main