contextualized-ml

View on PyPIReverse Dependencies (0)

0.2.9 contextualized_ml-0.2.9-py3-none-any.whl

Wheel Details

Project: contextualized-ml
Version: 0.2.9
Filename: contextualized_ml-0.2.9-py3-none-any.whl
Download: [link]
Size: 72429
MD5: e928a4d1153c9854725fdc0b68568360
SHA256: 6909c287c623cbeccf489ed6547819bd52df17b59ac4439f6b095b15b3861c12
Uploaded: 2025-02-02 17:02:56 +0000

dist-info

METADATA

Metadata-Version: 2.4
Name: contextualized-ml
Version: 0.2.9
Summary: A statistical machine learning toolbox for estimating models, distributions, and functions with sample-specific parameters.
Author-Email: Caleb Ellington <cellingt[at]cs.cmu.edu>, Ben Lengerich <blengeri[at]mit.edu>
Project-Url: Homepage, https://contextualized.ml/
Project-Url: Source, https://github.com/cnellington/Contextualized/
Keywords: contextual modeling,graphical models,machine learning,meta-learning,multitask learning
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Requires-Python: >=3.8
Requires-Dist: igraph (>=0.11.0)
Requires-Dist: lightning (>=2.0.0)
Requires-Dist: matplotlib (>=3.3.0)
Requires-Dist: numpy (>=1.19.0)
Requires-Dist: pandas (>=2.0.0)
Requires-Dist: scikit-learn (>=1.0.0)
Requires-Dist: torch (>=2.0.0)
Requires-Dist: torchvision (>=0.8.0)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 5982 characters]

WHEEL

Wheel-Version: 1.0
Generator: hatchling 1.27.0
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
contextualized/__init__.py sha256=pLdSnZOVD6R-443e5fyAVT03YdFb-UZwbPUZJfJZwkY 450
contextualized/functions.py sha256=BD76zkdY7bmKpvPSKkOwpQnq6I9v9q-iT-f7lZt3LW4 2058
contextualized/modules.py sha256=wbGH13GwkhcZk5rpLYjv6EN378u5RyO-ZvPlMpLAaKI 4390
contextualized/tests.py sha256=f077xTOEs_-HyBX7T1bJ1JgciBBIf82T7EZ8v0d839c 7989
contextualized/utils.py sha256=4_xIZ9h2ioA8iB8w4yI7YkOw3r47mPXoDusWnOYS0zo 1099
contextualized/analysis/__init__.py sha256=yTgCaletp0LgJJ0Job7z-4_0bZndR7mCbUfIICmPoB8 703
contextualized/analysis/accuracy_split.py sha256=tPefLpxdlAttYiFDqIYmWJFlJFHqxYkg4Dg1V8OiYhU 3081
contextualized/analysis/bootstraps.py sha256=vKqbJrP685iCtwwDjjB_FTSsQljXK3QjQ3lrgwHO5B0 1216
contextualized/analysis/effects.py sha256=RNUVO6teJNJ7YWnopqWQ1nlRk6qvAWkJ6Ken4TWDDVM 21186
contextualized/analysis/embeddings.py sha256=-aGW3yFSAvtZCc7YhY-lfKPyUk3c6x4lJarvZ-P0Brc 5762
contextualized/analysis/pvals.py sha256=zt6c5CoAbsOVzSxXdRW5KL2VznulL16e89Kju6PZ98Q 9554
contextualized/analysis/tests.py sha256=CnF1YUFKyUHwMwYIqpjuNnKcJLEtZvOtA-4ESB5ffWE 5353
contextualized/baselines/__init__.py sha256=dzZpCUbBeAsqGat10P7DDZkT5yXmm_YaeiLW2V-_IDA 223
contextualized/baselines/networks.py sha256=ALv464JcdHbsBnnPI8uUZSLJ7w4fHGtzLuuja8kZUbs 8499
contextualized/baselines/tests.py sha256=mrAoOKPITKrJvYmYtM6tpTJQ1tWdwApcVN-WjNvhfJk 3161
contextualized/dags/__init__.py sha256=Sp1wiwGjdLOECItwdWGBnIzh8Lkg_YhGuiOMjiV_HsQ 527
contextualized/dags/graph_utils.py sha256=8CECCtIqRu_QCFfOmHwOHyUg7LJl4imB5CmF7f8cg5U 5598
contextualized/dags/lightning_modules.py sha256=C4Qt6JySF4IfQMH4CCTVnSZqbZ1FaCL-tWVWEqbgXoo 15487
contextualized/dags/losses.py sha256=bz0TcDS0NZs_sb3bcDK6TymuEl5fprDeQwm5yzFYhzI 2619
contextualized/dags/tests.py sha256=Ma1qm2GZIvNRLNabJAb0Sghaho9YLdTabCoBcSEea7o 10398
contextualized/dags/trainers.py sha256=3OnWv_-OD7TA-FtLfQpFhmdx9t_iwUN1r9bxy-L9H_k 491
contextualized/easy/ContextualGAM.py sha256=6BmG-C7oix0J3V0qFMOsrKrSCO2KoeHo_gKSR8lKJ8k 2825
contextualized/easy/ContextualizedClassifier.py sha256=9THDjXz5JCKk1cqZfH7O8c0NEODY2dAdjrCGv52BRTU 3034
contextualized/easy/ContextualizedNetworks.py sha256=jtlrhYAxPGJYwV_zJuO7K1NyO-5_QWt9G5Fn_ygA6NY 22560
contextualized/easy/ContextualizedRegressor.py sha256=oRP77mjHRf-ngrRq59bnwx6s7hhNYP-jSDbKt51Y0CE 2483
contextualized/easy/__init__.py sha256=Dd4jC6qMYLv4E2b6prrUNEPttK6mWvLn4I6fPeYSDa8 492
contextualized/easy/tests.py sha256=N4b2_9Cckx3Zq2vwXatTJJYA7Yy6BbdJl7qDvNGccG0 13997
contextualized/easy/wrappers/SKLearnWrapper.py sha256=UdYSLpJ3B-V-SQaS3TyyKCnur73dIXUl2gyYjYELGSw 24067
contextualized/easy/wrappers/__init__.py sha256=BCXj6_JltVOv8K6soF-ockp5PeHmknykuF2eH1YsFBM 127
contextualized/regression/__init__.py sha256=wLMSFIhRLGy2yeIJqa-X5JihffgFv74XNg9wIicZxHE 1093
contextualized/regression/datasets.py sha256=Vgr7hBF1lGRah7GJf8JOMQMM11qXCvYPt-U_keJFp6Y 3655
contextualized/regression/lightning_modules.py sha256=nfKadFGWZRxShV8T-2FnVJSIhzo7NVkT4duzxpewahM 21887
contextualized/regression/losses.py sha256=3KY378Y3LzbGnqju1ddtgfOyGfROmHQlFJc9RK27mDg 948
contextualized/regression/metamodels.py sha256=7NE_y8yfIagWi56QTnfyWr-TxYOOo0xZOt5MdBGHdDs 8094
contextualized/regression/regularizers.py sha256=DseETkdzvDS2pT1feic6aZxFOMJtKJovmyeBew8uMVc 1604
contextualized/regression/tests.py sha256=ghCVg_1x_WzpntcaZdY2243OcXZAUx-P2uglPtKGuzk 12716
contextualized/regression/trainers.py sha256=9kDo0-9PYWbjz6Zk3xUqY1JNKAZkBurA8IcniAroKs8 2358
contextualized_ml-0.2.9.dist-info/METADATA sha256=AkyWfSBE2Dn8C6OLH56CS0kKpy8pEkrNrpOPqReKBwQ 6985
contextualized_ml-0.2.9.dist-info/WHEEL sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ 87
contextualized_ml-0.2.9.dist-info/licenses/LICENSE sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY 35149
contextualized_ml-0.2.9.dist-info/RECORD