cfl

View on PyPIReverse Dependencies (0)

1.3.1 cfl-1.3.1-py3-none-any.whl

Wheel Details

Project: cfl
Version: 1.3.1
Filename: cfl-1.3.1-py3-none-any.whl
Download: [link]
Size: 74970
MD5: 5929679a53135ffa73b8763c6544f016
SHA256: bef17bd71dfc84a95435fa6967776ac01abe5aa3fb907d308898a3f88141f558
Uploaded: 2023-12-03 23:03:52 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: cfl
Version: 1.3.1
Summary: Causal Feature Learning (CFL) is an unsupervised algorithm designed to construct macro-variables from low-level data, while maintaining the causal relationships between these macro-variables.
Author: Jenna Kahn and Iman Wahle
Author-Email: imanwahle[at]gmail.com
Home-Page: https://github.com/eberharf/cfl
Classifier: Development Status :: 2 - Pre-Alpha
Classifier: Intended Audience :: Science/Research
Classifier: License :: Free for non-commercial use
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.7
Requires-Dist: tqdm
Requires-Dist: matplotlib
Requires-Dist: tensorflow (>=2.4.0)
Requires-Dist: numpy (>=1.19.2)
Requires-Dist: scikit-learn (>=0.23)
Requires-Dist: jupyter
Requires-Dist: ipykernel
Requires-Dist: joblib (>=0.16.0)
License-File: LICENSE.txt
[Description omitted; length: 46 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.41.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
cfl/__init__.py sha256=XJXAvl7BR4XNUMO3tG-zzLFaKlCvVgLwa0aq8BmbWJI 343
cfl/block.py sha256=xOY9L4lO4kqBUOrMnBCobF85dPNCgzjgjOP0A4lRf4w 4519
cfl/dataset.py sha256=5JcN0nNAihMrAsZgcryfQTBwd16JfUD5QxW6cHH7hIw 6077
cfl/experiment.py sha256=L5a8NJySynlkhIt8eSZS-ovjxnL4C-j_sfIC5qvhUW8 26504
cfl/clustering/Y_given_Xmacro.py sha256=Ny3h4AznPh_nTOwmXBT9liaA8yeLXEH3Da3PwIgu0U4 11740
cfl/clustering/__init__.py sha256=QGpONPHwTfUSwBxvYOL6p2wBKTD6d-AhN90MaqbO7aY 222
cfl/clustering/cause_clusterer.py sha256=FGwEhOJPfZvsjdBZedg8qVuyOiUoE3kCadiiYObm_xg 10462
cfl/clustering/cluster_tuning_util.py sha256=Is3dYuWFX3PA7aePDbyvTSPh8gEdQfQsP9tse5qxybU 10566
cfl/clustering/clusterer_model.py sha256=o46AHh9zCMeAdMTm1lM4oYuzyCK89i4GwezRSyAHQfU 2226
cfl/clustering/effect_clusterer.py sha256=LTGOYKHlklXK66khMWaI5skpjgYPL_gv4xp_7z4r_hY 12347
cfl/clustering/snn.py sha256=z1U0c8dFPZkflKsl_ydzwsLqrdbIWMJll8iXgWY5-To 8614
cfl/cond_density_estimation/__init__.py sha256=hrZ6yPVdAZisvpgdAbRwFFB1dJWAM5Gkgl4dQi9J4gI 497
cfl/cond_density_estimation/cde_model.py sha256=JsK1QSs_rj8EbJ1v_TFs7vV2FtVX87ylJ1TC7DBveNw 4349
cfl/cond_density_estimation/condDensityEstimator.py sha256=OzirQ-1Bgsuh6fwAecglhvmVI1eio6JE5xAvSLaze5Q 5196
cfl/cond_density_estimation/condExpBase.py sha256=5kXmvZQo72D_InJsregDUxlDYJnrori6uW40T5BbjXE 15896
cfl/cond_density_estimation/condExpCNN.py sha256=7twkaiRGaMGPzM1i8gzZnqw485UFW166HbzlZOsi_Ds 9315
cfl/cond_density_estimation/condExpDIY.py sha256=6sYVtdC2itkwmIzsNTVrmQ5B8cYZKgqzwyUU59tby6I 5662
cfl/cond_density_estimation/condExpMod.py sha256=ly92jz0mlMpTnIqq2v-xtpspYf5LYHylYOBSJS7QNwo 7930
cfl/cond_density_estimation/condExpRidgeRegCV.py sha256=xmymEhNd0IkjGgfMM5Gn9-NsFGxXztNzsOvch-f8N98 8240
cfl/post_cfl/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
cfl/post_cfl/intervention_rec.py sha256=UPHL17zB53_O3kdbFQt9IfQtAaS8WmVkCv_IHe-1L0Y 13058
cfl/post_cfl/macro_cond_prob.py sha256=YpnGlTzdqnamAVwDah-HtimAMxqDPiagTS7tW0zzyOs 3670
cfl/post_cfl/microvariable_importance.py sha256=2T4YDwpUsrcpU0GfBQug5JEfrS0afL7TevBJexoagw8 6594
cfl/post_cfl/post_cfl_util.py sha256=Ya09P7awTHUggmPr-u9aFbZi_u8pakraQ5twb980msk 2392
cfl/util/__init__.py sha256=9iLSDaA6fSbv1D1TZJKZkAWg1ah8G5biA81UG-9D6Gs 70
cfl/util/data_processing.py sha256=zPMtzgRwHEfnsxDI8rvXb3X1EU_NOFB7ko2vviIqA8Y 2913
cfl/util/experiment_loading.py sha256=M5zqYBUoSgAOJpsZUnyOigvmGqAcyRf4DdtwLxeDkCg 1776
cfl/util/find_xlbl_locations.py sha256=EilUfNSQmH6NsrTIVdWVZSU_AWa7hmBnFTSYau1PdwI 1159
cfl/util/input_val.py sha256=ZOrXmd7qsCb0_pVTre3HOneqXkMVua21S7C1FHdfHw4 3509
cfl/visualization/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
cfl/visualization/basic_visualizations.py sha256=QoGm83ZrLyIKCxLgMy543lsLUQjrPMQTsnxMZitGNzo 13434
cfl/visualization/cde_diagnostic.py sha256=BrRhtfDiWxi43Wa3-5Xr_CwQxco7R_3KV4u6-NoRWZA 7902
cfl/visualization/clustering_to_sankey.py sha256=H3SDfYYZzRG6XVXu7xNkmfkCnYJ5d4lSmV1XwjwmLDM 3232
cfl/visualization/data_sample_visualizations.py sha256=mWBru1BQNYfA4OpZXUBevUdM9I7zOXQ9dfNOMpZUuGU 3121
visual_bars/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
visual_bars/generate_visual_bars_data.py sha256=GgJWH5YmL_RnBAZYL9EXHqgJI4rVhvyZF3LyXoqewfw 9937
visual_bars/visual_bars_vis.py sha256=UiE4KtwXrRc24wQz63vsIDrNkU5d-iMRtD2v66E3cuY 2865
cfl-1.3.1.dist-info/LICENSE.txt sha256=i2PGmRiQYzVSJJ1t_9EIH9XN5VJRfuo_9ZV8Ngkoe5o 2004
cfl-1.3.1.dist-info/METADATA sha256=YmRPjAmw4fjCLpUFzMZURlEwx5KpVxwJHwsKfMPlhzU 1153
cfl-1.3.1.dist-info/WHEEL sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A 92
cfl-1.3.1.dist-info/top_level.txt sha256=Zrc-NSTrdBB6yAMPUynE1XJ0hMzZG8KnIX1wNLCoC28 16
cfl-1.3.1.dist-info/RECORD

top_level.txt

cfl
visual_bars