ccsd

View on PyPIReverse Dependencies (0)

0.3.3 ccsd-0.3.3-py3-none-any.whl

Wheel Details

Project: ccsd
Version: 0.3.3
Filename: ccsd-0.3.3-py3-none-any.whl
Download: [link]
Size: 138045
MD5: 54a063ac1fa5261827852d4efb0e00d9
SHA256: 10a4af06a8fc7374695e278fa11f780969e950584c250925ac5e7bfe986bca58
Uploaded: 2023-09-18 09:25:11 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: ccsd
Version: 0.3.3
Summary: CCSD (Combinatorial Complex Score-based Diffusion) is a sophisticated score-based diffusion model designed to generate Combinatorial Complexes using Stochastic Differential Equations. This cutting-edge approach enables the generation of complex objects with higher-order structures and relations, thereby enhancing our ability to learn underlying distributions and produce more realistic objects.
Author: Adrien Carrel
Author-Email: a.carrel[at]hotmail.fr
Maintainer: Adrien Carrel
Maintainer-Email: a.carrel[at]hotmail.fr
Home-Page: https://ccsd.readthedocs.io/en/latest/
Download-Url: https://pypi.org/project/ccsd/
Project-Url: Bug Tracker, https://github.com/AdrienC21/CCSD/issues
Project-Url: Documentation, https://ccsd.readthedocs.io/en/latest/
Project-Url: Source Code, https://github.com/AdrienC21/CCSD
License: MIT
Keywords: ccsd,python,diffusion-models,combinatorial-complex,score-based-generative-models,score-based-generative-modelingtopological-deep-learning,higher-order-models,tdl,molecule,molecule-generation,machine-learning,deep-learning,graph-neural-networks,graph,topology,diffusion,artificial-intelligence,topological-neural-networks,topological-data-analysis
Classifier: Development Status :: 2 - Pre-Alpha
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: Unix
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.7
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Software Development
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.10
Requires-Dist: dill (>=0.3.6)
Requires-Dist: easydict (>=1.10)
Requires-Dist: freezegun (>=1.2.2)
Requires-Dist: hypernetx (>=1.2.5)
Requires-Dist: imageio (>=2.31.1)
Requires-Dist: joblib (>=1.3.1)
Requires-Dist: kaleido (>=0.1.0.post1)
Requires-Dist: matplotlib (>=3.7.2)
Requires-Dist: molsets (>=0.3.1)
Requires-Dist: networkx (>=2.8.8)
Requires-Dist: numpy (>=1.24.4)
Requires-Dist: pandas (>=2.0.3)
Requires-Dist: plotly (>=5.15.0)
Requires-Dist: pyemd (>=1.0.0)
Requires-Dist: pytest (>=7.4.0)
Requires-Dist: pytz (>=2023.3)
Requires-Dist: pyyaml (>=6.0)
Requires-Dist: rdkit (>=2023.3.2)
Requires-Dist: scikit-learn (>=1.3.0)
Requires-Dist: scipy (>=1.11.1)
Requires-Dist: toponetx
Requires-Dist: torch (>=2.0.1)
Requires-Dist: tqdm (>=4.65.0)
Requires-Dist: wandb
Requires-Dist: molsets
Requires-Dist: pytest-cov
Description-Content-Type: text/markdown
License-File: LICENSE
License-File: AUTHORS
[Description omitted; length: 23503 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.41.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
ccsd/__init__.py sha256=ERGOEIOZupaLmEKsKsqESn1YcHibgaeqWSHdUECXOfY 204
ccsd/diffusion.py sha256=yiKTMPDUk7XZxbjiUco_hKHCImeXYP3YnHFMQqV0Pz4 6970
ccsd/data/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ccsd/data/data_generators.py sha256=-PtGOjwIxubVlY0XejYl3gDhk39geb_XhM5ZIEbjcVA 23068
ccsd/data/preprocess.py sha256=oM3hgPeMDg2h0Bh1BX53zkdY6yGnbe0N1YuXRYJCiDc 2641
ccsd/data/preprocess_for_nspdk.py sha256=gGI1riklNwK6FCc2FcJRXu0OaBMzvDYz-GDLM0B_jcw 2304
ccsd/data/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ccsd/data/utils/data_frame_parser.py sha256=oQBv3CB7MQG6FDYD4sd9q-iqhrNM3fihbIUSgMcMqhs 7167
ccsd/data/utils/numpytupledataset.py sha256=XGhZGuUkfGK4qaQLW6gE1E-q9QKSVW72rFo1lM1pJus 2577
ccsd/data/utils/smile_to_graph.py sha256=UP9KmIH_6u2wswmIjmUTkfbNJTuLfIoyqS8V6RsysRM 5028
ccsd/src/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ccsd/src/losses.py sha256=xEg2UIl_GQyitnFAaMd8py8YnCPwfPZGvMS_GGJvke8 16409
ccsd/src/sampler.py sha256=oLE78KieK9WZ55Uyl-Rvfr5M6_lXOtX5aUE9xoonuFY 57454
ccsd/src/sde.py sha256=gYC4mItmWgrWFZNF3sCaEx9vdF8DfGIbiuO5eY26Two 29349
ccsd/src/solver.py sha256=ohUtX9xexKm8A8BjhMubeAPGKX_-GyGK5yXbheZgcVw 62503
ccsd/src/trainer.py sha256=IyOpsrN-K40WXgjp7Puskl-1nHxtt0ArzULStKQpHcY 24301
ccsd/src/evaluation/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ccsd/src/evaluation/eden.py sha256=cbaKYje26NpiJfAhakyYuIs2Hq3uEltHPsHi17hLVzU 45194
ccsd/src/evaluation/mmd.py sha256=nwq3wwpkM_pmYj4iCUI56it3VyGIMRJUueNnNKslAvE 14055
ccsd/src/evaluation/stats.py sha256=isnilqGxgo-_iiAWlTVtHxMzDgqTcw5QUc3ljC2eryM 20024
ccsd/src/models/ScoreNetwork_A.py sha256=w6gXzMWIy9xmpyd9nhUXtINiWaLsxSWvdhOJLFEKHj8 20448
ccsd/src/models/ScoreNetwork_A_Base_CC.py sha256=oCBWvjnKigmF3TyocAg_-GLji5sVa1rAR825NY1kPl0 12825
ccsd/src/models/ScoreNetwork_A_CC.py sha256=oQPSEW0ndow61ILqbdBCkSpKXrCdse4e6hn_Z09dzro 13330
ccsd/src/models/ScoreNetwork_F.py sha256=HtWrBbG8040JqdETQyNPIgbOcC9XgJn7AJhf6sQGzIE 7960
ccsd/src/models/ScoreNetwork_X.py sha256=Knqt6Oh8csPfPAPa4MHOTE4G30FcsRml86keddZrXeM 11585
ccsd/src/models/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ccsd/src/models/attention.py sha256=MeINKDlceU4xBEQ0FChh1q4S2AEFy6yYRwezmrWAvyY 10241
ccsd/src/models/hodge_attention.py sha256=zK2ptK5Fu4Yuc3YgiBJ5QR8eeIikuJjH1DbyJ8mr-GA 11926
ccsd/src/models/hodge_layers.py sha256=YHFXPK_TFepki73Ku2w3dI6QXjkoF8WCtqfJru0Zrfk 14437
ccsd/src/models/layers.py sha256=rSLLwziUiHLEL8PBH0I_1y_cLvhvoTc1BkXSkJ3XHv8 10168
ccsd/src/parsers/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ccsd/src/parsers/config.py sha256=2gXWxxht1e6AvqmX7Rpqj6RTAO0CNtv3Bx2PZmfqX58 1191
ccsd/src/parsers/parser.py sha256=4OCmuiJAfuldVhXGX-GDMjEbAOffxEs6lsiUdFJFaC0 2060
ccsd/src/parsers/parser_generator.py sha256=GpKqwZVgVK_dpOAEn4VNZkpcHMh4hyGwp2-wzkePPbk 2241
ccsd/src/parsers/parser_preprocess.py sha256=Vn5iyGXTqmDjTwLv-griFZfnxHbR9zGaIOyDDp60FSc 1699
ccsd/src/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ccsd/src/utils/cc_utils.py sha256=Bt132Q_eySVfyvkFwfQwOMmQNGZbAfqRsSa-37KVV1Q 67459
ccsd/src/utils/data_loader.py sha256=XivKFJkW9BY10Pm-IfdaJPv_DpVzmg5ftDMoj-jTDKs 4307
ccsd/src/utils/data_loader_mol.py sha256=oIGlkwX3qpKReoAW-uwD8mKWrXuFZDnUBrm2H8GVlIY 20690
ccsd/src/utils/ema.py sha256=BsyXfQVUVq--170nlGzD0d2jCUDZ7ern9a_Li8zqlA8 4892
ccsd/src/utils/errors.py sha256=YQ8USeahSwdEuqcWkrOYnZLri4n6npMkxKLMncqoGDo 837
ccsd/src/utils/graph_utils.py sha256=tlVul2vHh4X5z385Kl-rwWsb1Sk4i5dOW9Yn54H7Ls8 13520
ccsd/src/utils/loader.py sha256=hFquN0U3z6VKY0BdNDu0ovG9nisLsZ0UL_RAF97S0Co 24788
ccsd/src/utils/logger.py sha256=x2i9Zm2BWhxv4D8jmtScp1As8cgl7_8tMgWWLSovwds 9531
ccsd/src/utils/models_utils.py sha256=etUGxew3vrk5IrTqnWdZ0EzfEpYuhpFPbTnnTwe-bO0 1853
ccsd/src/utils/mol_utils.py sha256=-qyMx1RuCNj-kUCv6mGtdhV23F2p5gefE_HNh8lSWjw 11568
ccsd/src/utils/plot.py sha256=9BDBE53xEVxv5wYQxT169Qrln0i6WF9qxxUgx_aGGFU 29540
ccsd/src/utils/print.py sha256=8mh9KpDKRLSPXQ4gnlRZMts3eXvyfSRqFA3umcm0Ezw 2101
ccsd/src/utils/time_utils.py sha256=BW_f7Jw4nxwxV5GKPEYyoj4ePCwMi2hnQubNZYvxcmc 877
ccsd-0.3.3.dist-info/AUTHORS sha256=dfEdqQ1ezY-hE7V48y4F2mW61-cLIrVidJcMovjhiUg 13
ccsd-0.3.3.dist-info/LICENSE sha256=0xfpjbUy7lxCcFIlDld0NtL5owpx4xOopTdHlUJYDi4 1091
ccsd-0.3.3.dist-info/METADATA sha256=LGwlC1BejN_fiHZBw0qN3VsT6wK-w4d8EeYKUhQimi4 27092
ccsd-0.3.3.dist-info/WHEEL sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A 92
ccsd-0.3.3.dist-info/top_level.txt sha256=nQIxdfWhl4MqyRUIJQBCV57JVH1EAcbqWrri2SxmoDs 5
ccsd-0.3.3.dist-info/RECORD

top_level.txt

ccsd