causal-pipe

View on PyPIReverse Dependencies (0)

0.9.2 causal_pipe-0.9.2-py3-none-any.whl

Wheel Details

Project: causal-pipe
Version: 0.9.2
Filename: causal_pipe-0.9.2-py3-none-any.whl
Download: [link]
Size: 78529
MD5: b50b5e1255755f7c0904173e9552cde0
SHA256: 4cba76b8ece2ef450c76580aeba9e06a32a24c34f7236f93a15e82890ef423fe
Uploaded: 2024-11-10 22:27:08 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: causal-pipe
Version: 0.9.2
Summary: A Python package streamlining the causal discovery pipeline for easy use.
Author: Buchard, Albert
Author-Email: albert.buchard[at]gmail.com
Home-Page: https://github.com/albertbuchard/causal-pipe
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Python: >=3.6
Requires-Dist: numpy (>=1.18.0)
Requires-Dist: scipy (>=1.4.0)
Requires-Dist: scikit-learn (>=0.22.0)
Requires-Dist: causal-learn (==0.1.3.8)
Requires-Dist: bcsl-python (==0.8.0)
Requires-Dist: rpy2 (==3.5.16)
Requires-Dist: npeet-plus (==0.2.0)
Requires-Dist: networkx (==3.2.1)
Requires-Dist: pandas (==2.2.3)
Requires-Dist: factor-analyzer (==0.5.1)
Requires-Dist: seaborn (==0.13.2)
Requires-Dist: matplotlib (==3.9.2)
Requires-Dist: graphviz (==0.20.3)
Requires-Dist: pydantic (==2.9.2)
Requires-Dist: pydot (==3.0.2)
Description-Content-Type: text/markdown
License-File: LICENSE.md
[Description omitted; length: 10539 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.38.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
causal_pipe/__init__.py sha256=qYHgXQFMYuSzrwDan2V6JdD3JENoopktZugjvVnj03g 73
causal_pipe/causal_pipe.py sha256=ZYIZg1fP98ZTtKUCygDLfuFJ2sK6l8JNkuT63cJCR_Q 30305
causal_pipe/pipe_config.py sha256=_TyUoYrLvLQwwR2p4gcthoyT5ssAOnInXOVuv1Sx8VA 9686
causal_pipe/causal_discovery/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
causal_pipe/causal_discovery/static_causal_discovery.py sha256=LPyWWvH_5GU296pjX2guty5bze3HM4-p2yg9vrFOP0M 25177
causal_pipe/datasets/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
causal_pipe/datasets/example_datasets.py sha256=s54N70topNyejNYQtCobPxG_6CKxVEf3Mz7Y4LbORMA 8323
causal_pipe/fa/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
causal_pipe/imputation/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
causal_pipe/imputation/imputation.py sha256=M-461-6r8F5Sz2GUHiqq8Md_DVc06F-G2FqO4WlrP6k 15420
causal_pipe/imputation/pooled_multiple_imputation.py sha256=ONLZXApl9TCBsqjYV0lZro5OTWDvW2qq7mzUJN95ToQ 4706
causal_pipe/partial_correlations/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
causal_pipe/partial_correlations/compare_correlation_methods.py sha256=vOlJrLHJWbmbZ4ZjBIdaDyzYCwR65rUB9UVQ27Cfi_0 9234
causal_pipe/partial_correlations/partial_correlation_example.py sha256=ZNtqa3sptQtlWYo1aOSra70nwDrhYPZlBM_OytmxpzM 2186
causal_pipe/partial_correlations/partial_correlations.py sha256=TfJH-abreGuPvu3wsk9736aZa3p3Bf9qbO8IvwyLMZU 30277
causal_pipe/preprocess/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
causal_pipe/preprocess/factor_analysis.py sha256=eakj49WhnG7-EjbMVT2h3rWP-tq0LuEMF1z-Exqh7q4 17734
causal_pipe/preprocess/utilities.py sha256=SLXWOKtrsJDbCP6-utkBzdT_loDqVY-FxPrlcwgqoe0 5029
causal_pipe/sem/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
causal_pipe/sem/bayesian_sem.py sha256=nswB75oAzeeoPDVVyEgAa2N2WH5xlIo9rkxgYjTrE9U 16206
causal_pipe/sem/hill_climber.py sha256=GSKIpoGcXbPZElwg4XVXYGF84f3mi2_Xvp7MCbdGRUk 12663
causal_pipe/sem/sem.py sha256=w6mpQ5QpSQB6MSovkkEjbddj8wsnXmHePVIs2Mgke40 34900
causal_pipe/utilities/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
causal_pipe/utilities/graph_utilities.py sha256=wWQ5_vidroNY68erH1h-iSzFa5NaeOHit-6DbidC7Bg 30776
causal_pipe/utilities/model_comparison_utilities.py sha256=QKsSAKCLrDay80AZM-v2OhJnCVRlC1dX_swjqBL8uzk 58
causal_pipe/utilities/model_selection_utilities.py sha256=qIU2VTn8JLEMyaurnOZSXmZaLPu6kGsJUFShkfW4UBE 9822
causal_pipe/utilities/plot_utilities.py sha256=CHi4OyYo0txflggm1FhICVzlXtZ6nI4GB4DzKGPtytY 11426
causal_pipe/utilities/utilities.py sha256=DaY0lw8SU4BdO4BRPC2sU8PfXuxIQVPQuei7BAVBcUo 1094
examples/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
examples/easy.py sha256=TectHxX85VIprN6q991UKVpHV5912ySnu-5vTf2rK4o 2609
examples/easy_ordinal.py sha256=DNCwZKyOEMT9Wtxl6DTF_bJO_EVJCDlvV14DGVmOH2E 4960
examples/hard.py sha256=5lB1u2GRnNrCYClh5mmU5IpseM3AUgNnMDCnXBOsPxU 4402
examples/utilities.py sha256=N4hH6Kpn_thM65q9ciC4RHxz0PQbo6hHGSH9SFg9rco 198
causal_pipe-0.9.2.dist-info/LICENSE.md sha256=PtWdCOj9k3aXficlnoSG_0LU6tlt-l2FJnIAsbvhM44 1071
causal_pipe-0.9.2.dist-info/METADATA sha256=uXGNmcGxueRjCynEuQmlRAl-vmC45V5g9hzgC8q7RVI 11554
causal_pipe-0.9.2.dist-info/WHEEL sha256=ZL1lC_LiPDNRgDnOl2taCMc83aPEUZgHHv2h-LDgdiM 92
causal_pipe-0.9.2.dist-info/top_level.txt sha256=qmqJbnpidHQvX99bbFmq_5kWkMf9rPHH07JtWEWiLOY 21
causal_pipe-0.9.2.dist-info/RECORD

top_level.txt

causal_pipe
examples