bellman

View on PyPIReverse Dependencies (0)

0.1.0 bellman-0.1.0-py3-none-any.whl

Wheel Details

Project: bellman
Version: 0.1.0
Filename: bellman-0.1.0-py3-none-any.whl
Download: [link]
Size: 124630
MD5: c651a465ff38f361ed2698089c4054bd
SHA256: 61ccf24ff9f4663bcf681183de941dfff39863eecc7ded90df184f8658646ca8
Uploaded: 2021-04-07 21:58:22 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: bellman
Version: 0.1.0
Summary: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
Author: The Bellman Contributors
Author-Email: bellman-devs[at]protonmail.com
Maintainer: The Bellman Maintainers
Maintainer-Email: bellman-devs[at]protonmail.com
Home-Page: https://bellman-dev
Project-Url: Source on GitHub, https://github.com/Bellman-devs/bellman
Project-Url: Issue tracker, https://github.com/Bellman-devs/bellman/issues
Project-Url: Documentation, https://bellman-dev/docs/latest
License: Apache License 2.0
Keywords: machine-learning reinforcement-learning deep-learning tensorflow
Classifier: Programming Language :: Python :: 3.7
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.7,<4.0
Requires-Dist: gym (==0.17.2)
Requires-Dist: imageio-ffmpeg (==0.4.2)
Requires-Dist: imageio (==2.8.0)
Requires-Dist: matplotlib (==3.2.1)
Requires-Dist: tensorflow-probability (==0.12.1)
Requires-Dist: tensorflow (==2.4.0)
Requires-Dist: tf-agents (==0.7.1)
Requires-Dist: mujoco-py (<2.1,>=2.0); extra == "mujoco-py"
Provides-Extra: mujoco-py
Description-Content-Type: text/markdown
[Description omitted; length: 8430 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.34.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
bellman/__init__.py sha256=dary8WHBLBtWUXOJZwz8dafHbZHaWGlNAW6OM11epi4 793
bellman/agents/__init__.py sha256=apXbrxTcRqqA3PuRSzbSlDYb29EXlt1iFOVRzeUjQhc 662
bellman/agents/components.py sha256=dsrzmfKd9tf_jfj4kKcYqg5tfgoqF_TVK0LOxxVkbW4 1646
bellman/agents/model_based_agent.py sha256=Azh4qmUPLr7Hj_EZQqshaoegP_ZeqIiluj9Cr0Lr3CE 8488
bellman/agents/background_planning/__init__.py sha256=h_hv9J6X3dmsHfQLnOtHJtKkXpKU7jTqf-nLBhpZSlc 626
bellman/agents/background_planning/background_planning_agent.py sha256=BfYwMb_hYMVpoQJehXz6pVTr9V7xqoqddlBfBVvWqpM 16837
bellman/agents/background_planning/model_free_agent_types.py sha256=C6sAf9RAOrHY0OSPUusJ1DO0v7xjuYKJWL0GMoTVjHU 887
bellman/agents/decision_time_planning/__init__.py sha256=dJcKy4lysNJt0gwC7FbnOWxpjNee6PUDH0tjaewravY 629
bellman/agents/decision_time_planning/decision_time_planning_agent.py sha256=tYpmL509PJ1xUT13ooFE2V0MlMeiR3N2Ry9lmxZbm9g 8675
bellman/agents/mbpo/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
bellman/agents/mbpo/mbpo_agent.py sha256=lkzK9XxG-GxJ7nj9SrrxW1gfH0coS3EzkNmR5GRxLEQ 13171
bellman/agents/mepo/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
bellman/agents/mepo/mepo_agent.py sha256=4pBu-NchV6mtaLk0NQjivWVladflYBnr7RE-BiPi8_k 11708
bellman/agents/pets/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
bellman/agents/pets/pets_agent.py sha256=4Q6TcmRcWz9KEVgUros7_TcC4nZ6g5O4mvX7Bg4BDI0 11361
bellman/agents/trpo/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
bellman/agents/trpo/trpo_agent.py sha256=NVyBg9D-9j1meehdTDc2OaIa3-pH6oOOKenuNm3AD2s 22836
bellman/agents/trpo/utils.py sha256=3WIuXeeVFKM-iDPGYoSmOfsFm5GrHhrD80EYy1ADrU4 4005
bellman/benchmark/__init__.py sha256=6BuYzvYO_USE6jxAIqJUDAQmWkbAHDmKCsIuvoTGE0s 737
bellman/benchmark/mepo/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
bellman/benchmark/mepo/train_eval.py sha256=5fgnOwqrBYozzyVMQeXxqDlTxi2vCSULtTevbcsfMec 8792
bellman/benchmark/pets/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
bellman/benchmark/pets/train_eval.py sha256=rfBm93ZGfmT7MRYxOx7aexSsqSz8FP2bLcIiv7E9_es 8675
bellman/benchmark/trpo/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
bellman/benchmark/trpo/train_eval.py sha256=Ei3wAxuee-zbxcweIB-7_Lvf5f7-LlaNiL7cRkIxaL4 5929
bellman/distributions/__init__.py sha256=8oo6BDD3rmfmPGmgUNxGOJ4jJNPYj1LqMMo39jru7Ek 677
bellman/distributions/utils.py sha256=Qe5mG4AAW0ivqIlVntGD1B7DDsrokNCl-7MnAH0q1fw 1801
bellman/drivers/__init__.py sha256=v2nANgDJyuTOAuYAR5cyvjcHP-nk-Lmskz3tmiiR-B4 798
bellman/drivers/tf_driver.py sha256=ObHRMmXqx_bCpM2cAe_rJEXp4NEVpa3U-wORrlBL6rI 5187
bellman/environments/__init__.py sha256=nwPYx7ej0nkGZgK2mF4rBO9xTwhdInd_hxOLv_3L9UM 701
bellman/environments/environment_model.py sha256=ESW-Wdd3Y-3LTmYcU8VQsYyc8tJOW9BOm7lUEIa7Fyk 10299
bellman/environments/initial_state_distribution_model.py sha256=V8DVuOPRmaB_0_U4LEIZfgA5u9Qd9pdEfbzL62Iffuk 3016
bellman/environments/mixins.py sha256=Ie1rAdtpjcdFdhT1zlGFqPme54pQFduoYPAOy1SVWGs 1002
bellman/environments/reward_model.py sha256=MBWnzGIyC-4whhKqVUAHKyKspn7qLFgPqv5wdvHjI88 2224
bellman/environments/termination_model.py sha256=UTUfwdFqsiqZqyILmyrwllIPnyFBVH6MYqiFVJKnvKk 2036
bellman/environments/tf_wrappers.py sha256=E251Fn89_j2iV46aQsCwVEpEN1Owu4EQnxx2RzXYvCo 3343
bellman/environments/utils.py sha256=48ChXpXpE18lonexpKr9Ejldbrwv20F2LX-fxB7lHnY 4244
bellman/environments/transition_model/__init__.py sha256=vJnax5WQjGbGL5lcq_BAo2g9wqixRi4-EYxeIeq4ZIk 689
bellman/environments/transition_model/observation_transformation.py sha256=ePSPHEeTZ06IiWHCvE7rvZGBFg_4pUJb01MB1BNI9mk 2179
bellman/environments/transition_model/transition_model.py sha256=wXLqqDAXQZnEBda45NCMHfsiYSddfpdo2tWju0BuSGc 7828
bellman/environments/transition_model/utils.py sha256=rrpqHZULe7Tvbdxqpb2KEe5uE7ng-G7dkl0MgzxbFl4 3181
bellman/environments/transition_model/keras_model/__init__.py sha256=AczD7PGSEB3vSmHK033fHSTC01pzqIZxk22aL3h3XXg 683
bellman/environments/transition_model/keras_model/factory_methods.py sha256=MRWrpfHBM1dNkfgZlznA5YUmTrGxf-rjLV_biQLItrc 9736
bellman/environments/transition_model/keras_model/keras.py sha256=nnmrslQ4LC_s7GuR_csdy1fimCdmasvR_mh8u8jngp8 12364
bellman/environments/transition_model/keras_model/linear.py sha256=jV-7rULiElfMyH4_nX9iUZ7mSG26L1oHWtjeR8Pa8PA 1462
bellman/environments/transition_model/keras_model/multilayer.py sha256=QCOjM-n927vyKvQhUasOMFWfpgwQGDYeKOP9m73h3i4 6828
bellman/environments/transition_model/keras_model/network.py sha256=lme13nkuWUdeU_4bNQvxm0NL28oErelG2Csi9B7I-wo 4889
bellman/environments/transition_model/keras_model/probabilistic.py sha256=DT6VAtxWap3R8PrChkuQgOkmlTfm_S8Q9kbBQiHPg18 7742
bellman/environments/transition_model/keras_model/trajectory_sampler_types.py sha256=_WoaRbHl4fO3snhRiaJDy-qGLpnzVLvrgb1tiO3WGv4 864
bellman/environments/transition_model/keras_model/trajectory_sampling.py sha256=Ni7QGX-8vpMKsfF-9TmxzSVOg8q6FyWmWgZUO1E_fiM 8970
bellman/environments/transition_model/keras_model/transition_model_types.py sha256=syfeGG4Fc2MH_m-QJfg_cmedr2vkUKLXHOpcDrL-w6o 992
bellman/environments/transition_model/keras_model/utils.py sha256=2a7Po6nHX-4eN73Gxc9YlcLx1zguYkcU9JGLcETTQP0 4180
bellman/harness/__init__.py sha256=DHFfP5wCMKCd_7wQ8TlbFdT88MYYqqMW579nMwDDgXI 666
bellman/harness/harness.py sha256=wyZNhfo5B-VJ6td6hcfw3mRRI5ZwzzCdWn0q6YtuHZQ 17390
bellman/harness/utils.py sha256=PbejxzofSciFXiWuZXZrF1DzTQUqiOVJKVU-cb0jlz0 6193
bellman/networks/__init__.py sha256=mRZ9DID4FG0uzl4ju_5N4L-5EfDYH8Ud0jyiT66S8z0 673
bellman/networks/cast_layer.py sha256=Kh3CC7THnVDO9TUFQg_2FDq5gBf8lDi6yfprrxtFAhI 2254
bellman/policies/__init__.py sha256=B0hca-nj6E7yFGF8h_O5ZW39bc6wi3yi_a_HrIz2d2Q 686
bellman/policies/cross_entropy_method_policy.py sha256=NMsv2petQ2IpQzL42vIa3YU1b9g-uKmmrgc0bFB3JO0 6785
bellman/policies/planning_policy.py sha256=Fo0cAnTaMAPIOOrXEogtQv_CHfZMkymlVKWkFolnUbU 7555
bellman/training/__init__.py sha256=0vKQumiAjPncibq_KkgcuXuuANvOXRRoTCMIN1wKvXc 1367
bellman/training/agent_trainer.py sha256=T5nC67thicSROFAkQDe_4eYx41DcXCf6MWL1r1p8XkU 2060
bellman/training/background_planning_agent_trainer.py sha256=EJnMP1MUdBJlJDHFV-PvJ4X83Lhr0ikjarDlPWMFX_Y 4029
bellman/training/decision_time_planning_agent_trainer.py sha256=XCI0iRtWlqQxsT7JU6W-YtoazsHpp44VoF7WNYqPGC0 2368
bellman/training/model_free_agent_trainer.py sha256=UBtDEOYD3FbD-kF8QrKrI0ur3zAxd7T9BlRdebSlxJI 3838
bellman/training/schedule.py sha256=R8bgW1Oz8_TelGMBzQL2cLUY-NK_BLFKhr02NGVm32Q 5408
bellman/training/utils.py sha256=LUyz4Gy0f-8WyR8PpigfzBQX_TP7qR3BZ2z_ofZJmSs 694
bellman/trajectory_optimisers/__init__.py sha256=fl3Md35g4aUG4m_UTdiYK7oNEgJTcKeEYzvoM85i5PA 718
bellman/trajectory_optimisers/cross_entropy_method.py sha256=wwH3T9YD5P-XkbYddlG7lto9-_ptaqhICSK1yBjlvjY 6809
bellman/trajectory_optimisers/particles.py sha256=zaf3hwn-7c5Jx216DSFcgnlyh00dFG4_7dL77aNVumE 5717
bellman/trajectory_optimisers/random_shooting.py sha256=xgs8rfO_XEAyN-ehQn_Gronlz--EwSMe-uu1rhZd2dA 2438
bellman/trajectory_optimisers/trajectory_optimisers.py sha256=y_I_rxj51xchxror8fyGwkStJ0ZdJCsda8O9mMVooL0 11513
bellman/trajectory_optimisers/trajectory_optimization_types.py sha256=yPkdmfHc78R0Bq_0OpTtY72ZwcvaRgBl6OEXHxx8ghI 906
bellman-0.1.0.dist-info/LICENSE sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ 11357
bellman-0.1.0.dist-info/METADATA sha256=h6buuSabVM--AIBY4vR904z395_vmOrbykCec6txD64 9714
bellman-0.1.0.dist-info/WHEEL sha256=g4nMs7d-Xl9-xC9XovUrsDHGXt-FT0E17Yqo92DEfvY 92
bellman-0.1.0.dist-info/top_level.txt sha256=_NslQ1M-y8nAtxxq_T6PWjx9Ck3ZgosbZl6fbCZaqS0 8
bellman-0.1.0.dist-info/RECORD

top_level.txt

bellman