banet

View on PyPIReverse Dependencies (1)

0.6.7 banet-0.6.7-py3-none-any.whl

Wheel Details

Project: banet
Version: 0.6.7
Filename: banet-0.6.7-py3-none-any.whl
Download: [link]
Size: 35729
MD5: 71c9fb6aab2134800e50b6cc3d2ddeb3
SHA256: 1dffa4c3d5d9df9a19e03fccbd4475b4246f0e91101c2d7a3eeed73d7313d437
Uploaded: 2021-08-16 18:47:19 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: banet
Version: 0.6.7
Summary: A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images
Author: Miguel Pinto
Author-Email: mnpinto[at]fc.ul.pt
Home-Page: https://github.com/mnpinto/banet
License: Apache Software License 2.0
Keywords: burned areas,viirs,deep learning,computer vision,remote sensing
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Requires-Python: >=3.6
Requires-Dist: geoget
Requires-Dist: fire-split
Requires-Dist: fastcore
Requires-Dist: nbdev
Requires-Dist: fastai (==2.2.7)
Requires-Dist: rasterio
Requires-Dist: geopandas
Requires-Dist: shapely
Requires-Dist: netcdf4
Requires-Dist: pyhdf (==0.10.2)
Requires-Dist: proj
Requires-Dist: geos
Requires-Dist: cartopy
Description-Content-Type: text/markdown
[Description omitted; length: 7128 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.35.1)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
banet/__init__.py sha256=F6dMrYXtnIxoVQIhQnq6i1IIuwiHqeZxZMHThUjr2vM 22
banet/_nbdev.py sha256=7XU0eN63U90e7m70hhJ_k_U-qvicOZS5hHXpF0vhdR0 3455
banet/cli.py sha256=zUWKKbhAhXRm353IVWguZB1goDRmMtcHrRUtSmqz4zU 10080
banet/core.py sha256=WB2YV64jLwJEH4_1r6-i_skTtFfGBNJ15hB6idz_6XQ 3369
banet/data.py sha256=PHkky9I0itEQCI9IRBZK8g2rrU_dkpOxAUCFbMD9-hA 36072
banet/geo.py sha256=DQfbUwtQX-GElzsCWYKtx75LnHVc3rVLqmuIycFcA2k 6732
banet/historical.py sha256=ESLyf1s5JpQbgnyP1jZrBNNT8xGErAFgTt17EXC5yIc 4165
banet/models.py sha256=detd8ie0Qowmv56W74VDGj2ZV2LpHyzWfsAxQ-8NwCM 5685
banet/nrt.py sha256=KXlbfE6V1S5_2Df1UlFJOIDk-UxIE8hQxRdLP01Noj8 12676
banet/predict.py sha256=ePPImK17z0FDo90g_C8KVcHpmvNltSICXRSdukS4X74 11578
banet/train.py sha256=cQn5o1noNODOoyYPNvYTiaWagdlP39m9MOSCWe5R5B8 106
banet/web.py sha256=ku-H_iIGAI-e-C7NoF9GVHQWhU5L743x2f8t3kFG0O8 638
banet-0.6.7.dist-info/LICENSE sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ 11357
banet-0.6.7.dist-info/METADATA sha256=ExLbqETCPGRxqjwu65AEa828L8F0DKhKqtd94u1hb1A 8237
banet-0.6.7.dist-info/WHEEL sha256=EVRjI69F5qVjm_YgqcTXPnTAv3BfSUr0WVAHuSP3Xoo 92
banet-0.6.7.dist-info/entry_points.txt sha256=qWzlOPrsz86SSq3dS9h92sblMpXzvICzPgnn3sYOgpo 441
banet-0.6.7.dist-info/top_level.txt sha256=rH0ulYfVhjHMk3IRjaVSeaLyEuSWO6-GAdvFy5gij0w 6
banet-0.6.7.dist-info/RECORD

top_level.txt

banet

entry_points.txt

banet_create_dataset = banet.cli:banet_create_dataset
banet_dataset2tiles = banet.cli:banet_dataset2tiles
banet_nrt_run = banet.cli:banet_nrt_run
banet_predict_monthly = banet.cli:banet_predict_monthly
banet_predict_times = banet.cli:banet_predict_times
banet_train_model = banet.cli:banet_train_model
banet_viirs375_download = banet.cli:banet_viirs375_download
banet_viirs750_download = banet.cli:banet_viirs750_download