autorad
View on PyPI — Reverse Dependencies (0)
0.2.6 | autorad-0.2.6-py3-none-any.whl |
Wheel Details
Project: | autorad |
Version: | 0.2.6 |
Filename: | autorad-0.2.6-py3-none-any.whl |
Download: | [link] |
Size: | 82117 |
MD5: | a14e83208155c20c4ec688c10346fcd6 |
SHA256: | 173e71a9179513c66d118cf88ee36c5dab01a2315b3bf3f3b06598c4882997ec |
Uploaded: | 2023-02-19 12:29:52 +0000 |
dist-info
METADATA · WHEEL · RECORD · top_level.txt · entry_points.txt
METADATA
WHEEL
Wheel-Version: | 1.0 |
Generator: | bdist_wheel (0.38.4) |
Root-Is-Purelib: | true |
Tag: | py3-none-any |
RECORD
Path | Digest | Size |
---|---|---|
autorad/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/__main__.py | sha256=MO8_I16vk8mnJHxfD1W97dmLEzHtbyezD8v3-KU4ads | 857 |
autorad/config/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/config/config.py | sha256=MCf11ii00iynJcOBZeVv3cB3YrdIss0kN5TQWuwCKIw | 2875 |
autorad/config/pyradiomics_feature_names.json | sha256=UvZqR_WWvY44FZ9ejpyHUyTrOksFF95UjbVgWXbc_A8 | 3212 |
autorad/config/type_definitions.py | sha256=XeHhrcv5toe8E_pNLGDOzRNCjs4LJBYkT1HMX-Mwmzs | 71 |
autorad/config/pyradiomics_params/CT_Baessler.yaml | sha256=PVZTdDHsTSbv0yP8LVI6HOsBZZ_WdC2ksLMT8fqjDuc | 2346 |
autorad/config/pyradiomics_params/CT_default.yaml | sha256=7UQZerCua4EkA_j-5osbDXabKebPXHh2eEcoP-fPvz8 | 890 |
autorad/config/pyradiomics_params/CT_default_feature_map.yaml | sha256=fG1CKdrAO4fChFPZpq-YayzcgUYr1cJ7sAHpgfKP4ZQ | 896 |
autorad/config/pyradiomics_params/MR_default.yaml | sha256=i1DEEWh_JENnePWYVbfyZfAOV8qI_MVryQ-Sfpo_fp0 | 2330 |
autorad/data/__init__.py | sha256=oWHDEM2P5qICoZkd8oR85qDfTurQ5JgCWL-OoYgZ3cw | 138 |
autorad/data/dataset.py | sha256=rc3U4lSgBQRmmrMtVI5b_nII-fVfeAExgxeSXf9obIM | 16572 |
autorad/evaluation/__init__.py | sha256=sIrlxraTHUOdxp4GNpZuImKhNinNcV7onbz5HXfkPfQ | 58 |
autorad/evaluation/eval_utils.py | sha256=9vrus5WtPP9ORRS9iW3N2eDeQwzXTfXA7B3SOWJ7h40 | 1369 |
autorad/evaluation/evaluate.py | sha256=tXJZSrIRuMY33Tk5RdBOHmOn2aXfqyIo_N5nMWLV0XQ | 2271 |
autorad/evaluation/metrics.py | sha256=m1ZCpcB0Raee7zq5NVJkVv483J1AZgQh8EGSF0jPc1k | 1630 |
autorad/external/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/external/delong.py | sha256=CAlqkFFNvSKozBP1jORMkDc9ZqEhSFiygHWQySbgUI4 | 5468 |
autorad/external/download_WORC.py | sha256=APcLEvhEZyCf36KZz4wiZ-0U283Q6c5o0cc7M47D8Pw | 6607 |
autorad/feature_extraction/__init__.py | sha256=7u9kXnOdNFE6qJJKvKc150GI3upDxerDSVleAM87SMU | 40 |
autorad/feature_extraction/core.py | sha256=dm9_g47cX1Ekqn_8XURM50cI5i59Z4-C9zLwIPHM9N8 | 1059 |
autorad/feature_extraction/extractor.py | sha256=f_xHNUohEKnW2WYyidibNyhe5WPTsuh-AmvsglfBGa8 | 8662 |
autorad/feature_extraction/voxelbased.py | sha256=dhJL6XRXypoxzozoo0bBr_hU8SJc-vbYBzGMN4EwXWw | 1237 |
autorad/feature_selection/__init__.py | sha256=Kz78DyH3OonN5tvMMwFP4p8CZ_6iVBpf-7hh4AugHiM | 160 |
autorad/feature_selection/selector.py | sha256=5c_4BHJ6T96Y5mCEhLEPMpCaeEyYGk9XPQydIiEFffE | 4989 |
autorad/inference/__init__.py | sha256=y0U8MjvCuuAJ9VsmmU_SQcogRkcJhSkLZlCe6CqzhFg | 28 |
autorad/inference/infer.py | sha256=6wWp4YAJnxo4bntWLgeWcIAgkXEfF9gyCXlxbKkRPmM | 5260 |
autorad/inference/infer_utils.py | sha256=ZA8H77ddOAy6iwOsfV61VrEdNQ2t-n5d_TLaMOomnTA | 2086 |
autorad/models/__init__.py | sha256=JAQs20KlJgc_0vfleZE-A-AF37QijHAheaqX6TtNGZo | 37 |
autorad/models/classifier.py | sha256=3ESzYwF1Avdl4RhhrwLS6s9UCosTCLVwbraqDjwx3ec | 7408 |
autorad/models/optuna_params.py | sha256=8Z86xqw6MrmmM73AJ8cBqUwfctKU8QO3qKXQopDzpzo | 3704 |
autorad/preprocessing/__init__.py | sha256=5xWFC2VYcwHFd0bHCaUDbQ11f1KFIWBNxU4ye-pTTx4 | 61 |
autorad/preprocessing/oversample_utils.py | sha256=DtDShhaZeYgpdErjvSmOFRYGccUz7VrhO-2NisgQOGU | 1070 |
autorad/preprocessing/preprocess.py | sha256=AJtyU1aw8eR3FUyBurSA4q4vfzlkugqqQiF6WhavlJc | 9853 |
autorad/registration/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/segmentation/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/segmentation/utils.py | sha256=vl7ABr623fgcQq1p-9rDBq0tnkOcLHhd4lBDEBGJ-yc | 770 |
autorad/training/__init__.py | sha256=2KAnTalXhycwBktTDchyXZAN2GA1XhJVTNA7jj20eps | 68 |
autorad/training/optimizer.py | sha256=XVI7c_UtYgegW9mwdCtTciqHrq561lHn3W6e6CWCPKE | 4776 |
autorad/training/train_utils.py | sha256=s9VMY4_1UufDQqouUDWczmNRzLT0wACiAH6E_JfM4NQ | 1284 |
autorad/training/trainer.py | sha256=ScNNufCdcXqkPez9n9-QSXsGzsK94-mO8qSYw32vBwk | 7386 |
autorad/utils/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/utils/conversion.py | sha256=1k05FDYVgvQIbpYTcLVfur_G-iJFbhpM6qcv71L4Xjg | 1428 |
autorad/utils/extraction_utils.py | sha256=_CcIjCRy9C05At9q0xWdVIuvS_QSZ8piUUVdb5ptJH8 | 260 |
autorad/utils/io.py | sha256=3WvTv3_B_KNC0ZmbftzPG_7cBm6U_g4C7a5cP6s5KHI | 3880 |
autorad/utils/mlflow_utils.py | sha256=8GO7HYE17-_kw8tsJLNL_XVajpH0uJ3qY2PpQiJbk84 | 2536 |
autorad/utils/preprocessing.py | sha256=guf7vKI8uNCQsCKwugHEUC0cljwb_o1tJjuSWaGplxo | 5999 |
autorad/utils/spatial.py | sha256=Uv3kf8gkH-ECn24MZdc2Qy1Ynhv_dRniuzSvtrxT8K4 | 14909 |
autorad/utils/splitting.py | sha256=kOY0db0XQAY7ZoHyvfTsydPBhfYna3XTbArCVEowJIg | 4370 |
autorad/utils/statistics.py | sha256=v2XtdDIZ7HES6F5PIRJa__RAwvr6X6wunIs5AyWATxo | 3646 |
autorad/utils/testing.py | sha256=d2mVUhrDKxYZn06ABDYPoSySJbl8gPtQAk7zIk8cO00 | 2454 |
autorad/utils/utils.py | sha256=CgkoHHMzKPfPJeWb5W1Ck9Nywr0HR4eSc1q0b3nMIZo | 1325 |
autorad/visualization/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/visualization/matplotlib_utils.py | sha256=e1sbNqcNuFqbDsjVamKA7rHjyUZEPnisgvMEL4i1DeY | 3753 |
autorad/visualization/plot_volumes.py | sha256=ia5t8BhOcB4lvS1LPmtfXu5ASHdpF49duMionypfiVg | 11633 |
autorad/visualization/plotly_utils.py | sha256=vFgvupjJfTHj3c02BUPTmrn7kluXH19dwhEtxJ5byJM | 4486 |
autorad/webapp/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/webapp/app.py | sha256=kV0A5_QhrV2OtEHucf5wuT3HSvAUOWF7tP0sGt0zzdQ | 2556 |
autorad/webapp/extraction_utils.py | sha256=Rgf6pl9iYrJnD0RQjaZdXDqo15nYxwhfF14BHGxTIqI | 5814 |
autorad/webapp/extractor.py | sha256=6MBl-KCSeHMTz31tPlLZC7FHMgrbt2htjYmgcmWK3NM | 2219 |
autorad/webapp/paths_example.csv | sha256=rdhbUAr8av3lPuOiEtrvm6v_5NRE1QRNF56FKwSdfvY | 236 |
autorad/webapp/segmentation_utils.py | sha256=dey4rwwjJZD9csa1Q18OmKsTlbGxKH_hf--sfCsRk94 | 4609 |
autorad/webapp/st_read.py | sha256=08f_xp-MPfa2PLTgbJ2eo85gdjYKmeQntAWYEKqqN6c | 5818 |
autorad/webapp/st_utils.py | sha256=jQC0BLbMUJvXqA9R4Cd7givTlUszRQBfajd8arUB9bo | 4255 |
autorad/webapp/validation_utils.py | sha256=VXOlP1e7ck0I19QcEVAN5kUpTvV3wfnPxOA9TpO4y5U | 367 |
autorad/webapp/webapp_config.py | sha256=4P0eAKCNG57D9z_6BT-bEg3z9g50FpNgKygTSC7qKIA | 190 |
autorad/webapp/templates/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/webapp/templates/segmentation/__init__.py | sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU | 0 |
autorad/webapp/templates/segmentation/nnunet_code.py.jinja | sha256=67uL2p4HiVWiBy0JOdAgaD4_5Oh4lgVEzMzysspqYPI | 1161 |
autorad/webapp/templates/segmentation/pretrained_models.json | sha256=GIowESLr2xhVOtrbNg6rWthU8DoZQsgaZfkGGfvHJDQ | 8899 |
autorad-0.2.6.dist-info/LICENSE | sha256=vK_m0DW9Apx3H7kE3ag8U1d4zebnj8V9czlahOxapS4 | 11348 |
autorad-0.2.6.dist-info/METADATA | sha256=Rdwg6wNPgKTBilBCCQ8T7CZ95XOFUQ8y_K5ybEh9MUc | 6509 |
autorad-0.2.6.dist-info/WHEEL | sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo | 92 |
autorad-0.2.6.dist-info/entry_points.txt | sha256=LwAZ_ZIlG5feZFJPXcut17bA66JgNBqEf-VbezwFdvQ | 158 |
autorad-0.2.6.dist-info/top_level.txt | sha256=BYeMYih9YzJpknvZ-IxNxuu_6osxV6S0fLNhiorltrs | 8 |
autorad-0.2.6.dist-info/RECORD | — | — |
top_level.txt
autorad
entry_points.txt
dicom_to_nifti = autorad.utils.preprocessing:dicom_app
nrrd_to_nifti = autorad.utils.preprocessing:nrrd_app
utils = autorad.utils.utils:app