autoembedder

View on PyPIReverse Dependencies (0)

0.2.5 autoembedder-0.2.5-py3-none-any.whl

Wheel Details

Project: autoembedder
Version: 0.2.5
Filename: autoembedder-0.2.5-py3-none-any.whl
Download: [link]
Size: 17685
MD5: 696b47361f35f483d0f97ca6c2608b63
SHA256: ca75b38438d4d888bac225b1ea1ce5b0920a7c9b290bdfefedc514d681a3889e
Uploaded: 2023-02-07 08:36:09 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: autoembedder
Version: 0.2.5
Summary: PyTorch autoencoder with additional embeddings layer for categorical data.
Author: Christopher Lemke
Author-Email: chris[at]syhbl.mozmail.com
Home-Page: https://chrislemke.github.io/autoembedder/
Project-Url: Documentation, https://chrislemke.github.io/autoembedder/
Project-Url: Repository, https://github.com/chrislemke/autoembedder
License: MIT
Keywords: autoencoder,embeddings,model,pytorch,neural network,machine learning,data science
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Requires-Python: >=3.8,<3.11
Requires-Dist: dask (==2022.12.0)
Requires-Dist: einops (<0.7.0,>=0.6.0)
Requires-Dist: fastparquet (==2022.12.0)
Requires-Dist: numpy (==1.24.1)
Requires-Dist: pandas (<2.0.0,>=1.5.2)
Requires-Dist: pytorch-ignite (<0.5.0,>=0.4.10)
Requires-Dist: tensorboard (==2.11.0)
Requires-Dist: torch (<2.0.0,>=1.13.1)
Requires-Dist: torchinfo (<2.0.0,>=1.7.1)
Requires-Dist: tqdm (<5.0.0,>=4.64.1)
Requires-Dist: typer (<0.8.0,>=0.7.0)
Description-Content-Type: text/markdown
[Description omitted; length: 12654 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.4.0
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
autoembedder/__init__.py sha256=jSytGwGtKPVvg8U1vT_3z_RzWU9cKAJnPAyteEUG0vw 165
autoembedder/data.py sha256=uEKcjKGK4JoljGs3g8CnFHCSGlKMHGUgQw9jE3phAfk 2664
autoembedder/evaluator.py sha256=NJ6VL0C7GFJ2UP8BlOw3ZuhfQK1wemDY4TbwGi9yJYU 4186
autoembedder/learner.py sha256=qhe50HVFbQbFbHN3il_unEl8pUnEF4vFwEQ5_QSFSLE 15118
autoembedder/model.py sha256=bjSPARnbkZ3cZhDHkuPoFoyfO6tOsy8jIz0NMKSE5FU 10166
autoembedder/training.py sha256=AoB64gpaFBk0o03EZUDOS1UQGzJyVmssmvv637szyKg 7897
autoembedder-0.2.5.dist-info/METADATA sha256=OkcayRKz1fFPdaHZmfqipaXWUrh7UUiSTccTQU89YLE 14093
autoembedder-0.2.5.dist-info/WHEEL sha256=vVCvjcmxuUltf8cYhJ0sJMRDLr1XsPuxEId8YDzbyCY 88
autoembedder-0.2.5.dist-info/LICENSE sha256=vVCeuORSw6nl2d0Lz-9dQyFbhkPRHEcU60yPpa-H_hk 1074
autoembedder-0.2.5.dist-info/RECORD