auger.ai.predict

View on PyPIReverse Dependencies (1)

1.1.12 auger.ai.predict-1.1.12-py3-none-any.whl

Wheel Details

Project: auger.ai.predict
Version: 1.1.12
Filename: auger.ai.predict-1.1.12-py3-none-any.whl
Download: [link]
Size: 134519
MD5: c76864473be2a06d7d497cd80b8fdb29
SHA256: b6d0520145834104fbf3e2846c6567aa0b7485fd5d6ea7d49e007c54ec3746bc
Uploaded: 2024-01-20 18:12:29 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: auger.ai.predict
Version: 1.1.12
Summary: Auger ML predict python and command line interface
Author: Deep Learn, Inc.
Author-Email: augerai[at]dplrn.com
Home-Page: https://github.com/deeplearninc/auger-ai
License: Apache
Keywords: augerai auger ai machine learning automl deeplearn api sdk prediction predict
Classifier: Development Status :: 3 - Alpha
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: System Administrators
Classifier: Topic :: Software Development :: Build Tools
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3 :: Only
Platform: any
Requires-Python: >=3
Requires-Dist: numpy (==1.23.5); extra == "all"
Requires-Dist: pandas (==1.5.0); extra == "all"
Requires-Dist: six (==1.16.0); extra == "all"
Requires-Dist: scipy (==1.9.1); extra == "all"
Requires-Dist: scikit-learn (==1.2.0); extra == "all"
Requires-Dist: xgboost (==1.6.2); extra == "all"
Requires-Dist: catboost (<2.0,>1.0); extra == "all"
Requires-Dist: lightgbm (<3.4,>3.3); extra == "all"
Requires-Dist: modAL-python; extra == "all"
Requires-Dist: joblib; extra == "all"
Requires-Dist: boto3; extra == "all"
Requires-Dist: s3fs (==0.4.2); extra == "all"
Requires-Dist: stopit; extra == "all"
Requires-Dist: smart-open (==6.2.0); extra == "all"
Requires-Dist: kombu (==5.2.4); extra == "all"
Requires-Dist: celery (==5.2.7); extra == "all"
Requires-Dist: numpy (==1.23.5); extra == "no-cat-lgbm"
Requires-Dist: pandas (==1.5.0); extra == "no-cat-lgbm"
Requires-Dist: six (==1.16.0); extra == "no-cat-lgbm"
Requires-Dist: scipy (==1.9.1); extra == "no-cat-lgbm"
Requires-Dist: scikit-learn (==1.2.0); extra == "no-cat-lgbm"
Requires-Dist: xgboost (==1.6.2); extra == "no-cat-lgbm"
Requires-Dist: modAL-python; extra == "no-cat-lgbm"
Requires-Dist: joblib; extra == "no-cat-lgbm"
Requires-Dist: boto3; extra == "no-cat-lgbm"
Requires-Dist: s3fs (==0.4.2); extra == "no-cat-lgbm"
Requires-Dist: stopit; extra == "no-cat-lgbm"
Requires-Dist: smart-open (==6.2.0); extra == "no-cat-lgbm"
Requires-Dist: kombu (==5.2.4); extra == "no-cat-lgbm"
Requires-Dist: celery (==5.2.7); extra == "no-cat-lgbm"
Provides-Extra: all
Provides-Extra: no_cat_lgbm
Description-Content-Type: text/markdown
[Description omitted; length: 5035 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
auger_ml/AugerMLPreprocessors.py sha256=tYRaT3q6_f6vQfC2oMtTlOI4xaqeI_wlSGsh349WEI8 23866
auger_ml/FSClient.py sha256=lTxKD25gJs4JreuRiF397EzuVE0ivTzI-eNqwn0-Bkk 16118
auger_ml/LocalFSClient.py sha256=lP27Vizp74mOQkyxmXR1E0sy5ft-ZfAS20eIZzzfbns 7967
auger_ml/S3FSClient.py sha256=P_E_K1gMyuF6qTLWgDFCZsIRXO3_4M5mtwS58s2cSfU 22439
auger_ml/Utils.py sha256=dy9mgSsRefd1GkfGJNhLXE99Jio3I76nRxz9dE51tPk 18177
auger_ml/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/celery_logging.py sha256=jrZV2D88ydjyc2dDZEFR89vKQK2GEJXZHJ-MAIRyX2U 1803
auger_ml/model_exporter.py sha256=VekUEkJkmKTz5hRDw_h6SoR4jmGaHWtM_G2Fn-pO2ok 17970
auger_ml/model_helper.py sha256=RKemdvYcOV9PG_AvyJc97C5C5Fc0l-V-CbBqQO7dzcQ 18581
auger_ml/model_review.py sha256=QrUtoZV2BbOa-oD9-xP9kkeL1Sno1N25Dv5oCqXeohs 16483
auger_ml/probabilistic_counter.py sha256=-ZWe_n7twR85cCdpihbNdnatF9cWv1fgn3Wd-C63Z54 389
auger_ml/warmstart_optimizer.py sha256=g-VKWbHN8FtA_HP57LMlxQ4z_7ugnTvLYhczI9lsAlI 1711
auger_ml/algorithms/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/algorithms/adam_wd.py sha256=pJSHrlZh9ZDB_V19SwtdJkoKvXsOsctCRWX8RhIqh8k 5014
auger_ml/algorithms/baseline.py sha256=V--4wj8mjMsYfKYzN5zwEWlG4zPSrIi5oCqC7OQkLs0 162
auger_ml/algorithms/cat_boost.py sha256=7GO9rzP9DAuWumz1HO_Br-gsfyZFAkmCmV-LUaUx6Bg 3427
auger_ml/algorithms/dnn.py sha256=84EDpxgjinXM-zfHlVBg4wLIyK3r0e-gEZ0QRCkKm2c 1042
auger_ml/algorithms/dnn_base.py sha256=LpgRR9vfQSMGyzDb6lxZuG_WkTzvTg205WpdpBQjS6w 22697
auger_ml/algorithms/dnn_res.py sha256=TfvpjzDBOFQq2-7hY5ETF-rmjvfCBAChx0QgYLGOMlM 2157
auger_ml/algorithms/dnn_shaped.py sha256=zXUp2T8zeB4Fnl_Z_3RX26K7AHc23kXwDKirrv5M82c 5147
auger_ml/algorithms/keras_mem.py sha256=Zq0UoH3pzFz6_c2cGQBn0fo3jo2caVyGpZ4N_5T-jSE 1153
auger_ml/algorithms/linear.py sha256=H5-aPxjf65S4_XDwQxK_0mjA9VSdkD95UJ37z4EQ4Ls 1298
auger_ml/algorithms/mlp.py sha256=oXg7PbZPQcts58YL7xXnIC6dNdtstBBQLiPfjOcXeuA 6782
auger_ml/algorithms/svm.py sha256=IzeOtPW_fa8UH2ZNpvHlVl7jyEv6fcrnulAUdg_DiE4 1223
auger_ml/algorithms/timeseries.py sha256=zSJkrOrLRhYMq70dO4Az0iSweiVGPMTPLBIqsi6DJmM 1743
auger_ml/algorithms/ts_dnn.py sha256=J-JQgGlPt3Vp6A2gF_vssA7YUTKmHTaccNKt48NcdyU 11030
auger_ml/algorithms/ts_dnn_cpu.py sha256=u-wAuIuV0HDh9eq6nR7bZyo6qiYtKTgtBMgjxcnxo6g 12511
auger_ml/algorithms/ts_lstm.py sha256=OQWXTJnNwFn6Baf_mqXaM5dDtn92TGpEMROcNpmNtcs 3626
auger_ml/algorithms/utils.py sha256=7nFMZpfR_NjKeF_Jo3nAyT3nDfea_NabRjRgaE9cy98 1866
auger_ml/data_source/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/data_source/data_source_api.py sha256=wx0rZjpd93bMavHCF8ej65zZfdXftbep7NMdP1sciLY 4856
auger_ml/data_source/data_source_api_pandas.py sha256=rqOqcyw3Oa2BCpFTLVwTFAQaLTQ5zNlXbi-0DM8O1ts 88992
auger_ml/data_source/data_source_api_pandas_proxy.py sha256=uR9mRvtvxkO-C6KgmQ2VWvVJc55mRj-h3kcB_vYJfVE 1123
auger_ml/data_source/data_source_factory.py sha256=X2NBrhe085-M5VKf7FHEK1aeLoK06RzJQLMu1JrdEkQ 1361
auger_ml/data_source/group_splits.py sha256=LFrc7nvDT1a3aHGs4iS2aOEK9zq56Adw2O1hChXTaMA 15064
auger_ml/data_splitters/BaseSplitter.py sha256=_HWfnLHGSeu3oI11ymCXjRjomD_jkvkTfs68dVk_Ehg 116
auger_ml/data_splitters/DFSparkDataPrep.py sha256=bGQ8Ri5EIbZdwFO3w5E9QlJmA2VZn8JuvnetksJ4NeE 711
auger_ml/data_splitters/SimpleSplitter.py sha256=WjrIwt_bZXeKnq8xH7Z0gMag_hMqJBRcjfR4GIQtuug 1323
auger_ml/data_splitters/XYNumpyDataPrep.py sha256=aDWN5eisz8Ul8Gl-FBoPAbTp58wpcrdrHDW4HHf2mgk 2488
auger_ml/data_splitters/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/ensembles/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/ensembles/algorithms.py sha256=QIXXSX9L-YU_6LCHztSjOI2MSMoiooQOBUSeXq_vI60 11044
auger_ml/ensembles/base.py sha256=e-7adG60jVyQpL0Ycn-rIg-DVyp0eFohWWsnkHa0fSA 11014
auger_ml/ensembles/build.py sha256=_dHD-bHVa3YR0WeRLGAmGQeRAgmddE9MOArU_oEC5vM 6948
auger_ml/ensembles/deep_ensemble.py sha256=-QeI4S3sy99-0s0M8SMSjITFIzjNIjioGNLZQRXSHSc 7541
auger_ml/ensembles/deep_super_learner.py sha256=bPc2SyIPX7JDFLB06X3v4IHgAKOLs8W9Zq1BElw0j-s 6044
auger_ml/ensembles/greedy_selection.py sha256=DnFK_LzOvps_VQO3hNv2lFiPxvfbaPfEOulScRanKaQ 8981
auger_ml/ensembles/load_data.py sha256=gc3pNLPboIsxOevFZVfSNefNkVuR2QYaZtikx1XKw7I 3138
auger_ml/ensembles/metrics.py sha256=i4QWS0tjWbCAZcoOIlr4iik7MSFIej6QFRIuq989SxA 1407
auger_ml/ensembles/super_learner.py sha256=Xq1R_95JrkzftdJmy3sK6wiR52lgqengOlWO_y2eusk 11820
auger_ml/ensembles/utils.py sha256=UgxhReqsLEiHrhQa2FHDVRm7b7cPsTWCiitFbCDBh3Y 7087
auger_ml/ensembles/space/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/ensembles/space/classifier.py sha256=s1rlqjElk5vrcOm3msVek3Wml_8HqBuOIr5XgDhX2ps 918
auger_ml/ensembles/space/regressor.py sha256=d34narHucSbgo05utuieDtutsbDInkUkzFXd4FPoOiY 267
auger_ml/preprocessors/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/preprocessors/base.py sha256=aEAbyuVA7W4jP6fp7yLhkSB7iI6Ct5czRxVdLq7NHBI 1509
auger_ml/preprocessors/categorical.py sha256=Q0JD7WBmJDGC7kNHN9lMZ806t6bERjdqlZn_ZsHYzIw 3389
auger_ml/preprocessors/date_time.py sha256=k8uCiZk3eaOC2hDFE6-_r5qY6i3ovcHg_gs99AT7JfE 2354
auger_ml/preprocessors/dim_reduction.py sha256=2FagF6sIFnLA-6VzerNH_DqTFBB-djd9DCow1h-HYR4 1492
auger_ml/preprocessors/eliminate.py sha256=_ypyJ02dIe3MsCHoyBLeusIrJYtZqVDna8wAUHoZNDY 1067
auger_ml/preprocessors/extra.py sha256=0G6_eRGoQjxsawnShVKxO8WM3XafB_tmMtVaiJEcwy8 1405
auger_ml/preprocessors/nan.py sha256=6W4bVZ2BKtOg2E4FxdkzIzdaifEyQ94i2nve6Ps53uM 2159
auger_ml/preprocessors/scale.py sha256=lAMToADX4MyUssMwx-8-Ef66XLNQ7d2h8V4fFKs5a-0 1607
auger_ml/preprocessors/space.py sha256=zvnMhp5Ruc-TC-NFeLEOrnqcGrul4utcUfSKbs5f73Q 10689
auger_ml/preprocessors/sparse.py sha256=4Vks46iebf9JP30mEHYe-fhu-11FteLu0nQOCXhzt1s 1911
auger_ml/preprocessors/text.py sha256=T4XWpy6JsCGtkFIXVQ81ovAena5KPoY4Aq-hT1I10wc 15532
auger_ml/preprocessors/time_series/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/preprocessors/time_series/embedding.py sha256=tWh5zKCIRJT4pBgmwflP1pidanP7AgU0XpYQ4NlJbio 1286
auger_ml/preprocessors/time_series/interpolate.py sha256=ONYV671I8aGs87qh_qCW_9nyZZXuuTDNAJcfajbVjWc 580
auger_ml/preprocessors/time_series/resample.py sha256=ZYBj0ewQi_Z0IEm4BY56qj2vOiR9ABzJeNXAkHI0mBc 1266
auger_ml/preprocessors/time_series/ssa.py sha256=oR-4nV_RGZDCTKQPH8Yx_y6qiozUcs3WVPJPcO7nEZ4 1524
auger_ml/scores/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
auger_ml/scores/classification.py sha256=BwXRRHo2ARS125VwC4V_x9aKRReZtdyzZdgZblacWXs 4285
auger_ml/scores/regression.py sha256=TuM3aKxYcBZnMjs9OUr6o0Gl4EIA9uJpgRwV2MWqjY0 3454
auger.ai.predict-1.1.12.dist-info/LICENSE sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ 11357
auger.ai.predict-1.1.12.dist-info/METADATA sha256=CM-8bBVmLBC2OPnm6UR1MpKjtyf2FaXZ5HWiBKkLWqI 7384
auger.ai.predict-1.1.12.dist-info/WHEEL sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM 92
auger.ai.predict-1.1.12.dist-info/top_level.txt sha256=OAZTv-tyoAj0z0-_xEhhdpntAR17SQ5SaK9p8IkxmXU 9
auger.ai.predict-1.1.12.dist-info/RECORD

top_level.txt

auger_ml