audpsychometric

View on PyPIReverse Dependencies (0)

0.1.1 audpsychometric-0.1.1-py3-none-any.whl

Wheel Details

Project: audpsychometric
Version: 0.1.1
Filename: audpsychometric-0.1.1-py3-none-any.whl
Download: [link]
Size: 30515
MD5: caef91fc9f21e4cd02a673f035ea0646
SHA256: 0b2215cbe2c97d09725ae8a19f0b6034f24ba8deb83a015403c03230fd8b76ea
Uploaded: 2024-09-05 14:36:35 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: audpsychometric
Version: 0.1.1
Summary: Analyze and summarize human annotations
Author: Sandrine Lefort
Author-Email: Hagen Wierstorf <hwierstorf[at]audeering.com>, Christian Geng <cgeng[at]audeering.com>
Project-Url: repository, https://github.com/audeering/audpsychometric/
Project-Url: documentation, https://audeering.github.io/audpsychometric/
License: MIT License Copyright (c) 2018-2022 audEERING GmbH and Contributors Authors: Christian Geng Sandrine Lefort Hagen Wierstorf Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Keywords: audio,data,dataset,annotation,mlops,machine learning
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Topic :: Scientific/Engineering
Requires-Dist: audeer (>=1.10.0)
Requires-Dist: audmetric
Requires-Dist: pingouin
Requires-Dist: numpy (<2.1)
Requires-Dist: pandas
Requires-Dist: scikit-learn
Requires-Dist: statsmodels
Description-Content-Type: text/x-rst
License-File: LICENSE
[Description omitted; length: 174 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (74.1.2)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
assets/congeneric_reliability.r sha256=IJTcPwTCe1JoL9peKXgeBVi5Y_rvYxUy5UK8sgbegUk 443
audpsychometric/__init__.py sha256=eQIYW3ol8SJIDFDrsdhpb2cGNiLQ6UCDd4p85XBApqU 948
audpsychometric/core/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
audpsychometric/core/gold_standard.py sha256=l0fgcSOKFdG3gUvEm3C4Yx88DtZcHb9pSiTa3Z_saA8 8684
audpsychometric/core/reliability.py sha256=AsVa5UAHgLzBbRfyjHfTFSso6LDNMFjQ7wlb_VDwjmU 16755
audpsychometric/core/datasets/Hallgren-Table-03.csv sha256=_uaEPAZ_sm_HhvSMFtCMC2-z8wFUFkAjgy3SN09gkbE 140
audpsychometric/core/datasets/Hallgren-Table-05.csv sha256=oRG-bqYphx0utJ45HO4BZjSM60rnb2OokTZ4Qr5P0Lg 99
audpsychometric/core/datasets/HolzingerSwineford1939.csv sha256=FAUZw-RpILOBkdTNlBX6M93EBjMpTm0-MK-CJC97YgQ 25664
audpsychometric/core/datasets/Shrout_Fleiss_1979.csv sha256=TgdFozaEv00UuugbMFI6FNsSm2y2F79_SyaEGkl2yBA 111
audpsychometric/core/datasets/__init__.py sha256=YHvVlirYhrKmL5do6vLoD7Bw8eJf6SIKHkxnH_cFb2k 2003
audpsychometric/core/datasets/datasets.csv sha256=wVg7_YQdqCZauafoElMo-QOuwD73zvlMglgpG-g_1OI 836
audpsychometric/core/datasets/statology.csv sha256=BYMB51P-FUBiHckj0riPRS6GEzNQbXJbimClIuyAcQo 162
audpsychometric/core/datasets/wine.csv sha256=v7iE9X3HbAKpUtUJDU86sQdepitix3jfJQd06cDw_Jw 210
docs/bibliography.rst sha256=89SjqeREL83_Sk1NSoMOnZrEa8WTD5QHdF6ccl4Inlg 54
docs/changelog.rst sha256=vYs-i1VREFuYfrPybMcoic9HFFfteNEtk4cKs54ewxE 30
docs/conf.py sha256=exjOb3Fu--vkZVoSc5gCYMO7lq-Kh1bzb_r1IMjfews 2477
docs/contributing.rst sha256=h9XHQ0lx_ySKgXQmwqhJQLPD7VElHdyu1ruKfYWvrYA 33
docs/genindex.rst sha256=Ea9TmLlWloKThdhQjY8KS11oxMs3O7k6aWZYKP1fWTk 12
docs/index.rst sha256=igrHZHdFJYXmPsJTka8Fx2n5u5p3ReSsyGOo3Po-QIY 544
docs/installation.rst sha256=jS1iR7llJRGeYoBGVCGYXuPDVdcV0yJOgpHPV3ikybQ 322
docs/refs.bib sha256=hVVKbl7ak4rTL4MqcBRfCndZzs_ga__E0W3LcKfBIVE 3151
docs/requirements.txt sha256=JG7hPGuEz-OFlG_Pj_XIhxXCSwSOywT4twrJrIEsUgQ 138
docs/api-src/audpsychometric.rst sha256=9jl1Km_jC524KnfNBloVWxkGQwbeTO5jtYgsptMFDkI 339
tests/conftest.py sha256=HcIco0Vit4J20N3wxVCM_DnczLgKmq2wFEVXWxNa2_k 936
tests/requirements.txt sha256=ex0RnyCjn7oYHv0ppYhh8YIMs3_ZTGAAbDgF-Plx0sQ 43
tests/test_dataset.py sha256=zTlDpqjVLoVgW8DTlCihcqw1DUjOORa5wHF1UhG2Ny4 691
tests/test_gold_standard.py sha256=zebiE9F1iCjm37pisQMKyhIaiv0Vge2GslphijAAAtY 7971
tests/test_reliability.py sha256=tyW5Ha8qe8A9_SnB6zPFo5SpLXrzgKiatschiOFdwCw 2706
audpsychometric-0.1.1.dist-info/LICENSE sha256=KhIdIPhT7ZrewmPIP9Yz9SBXvxutEOtGllvipLCiWWk 1162
audpsychometric-0.1.1.dist-info/METADATA sha256=Y_5tem1BAb9TfExexQeJpj8XTwwTekquV_0z5qYXhhw 2817
audpsychometric-0.1.1.dist-info/WHEEL sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY 91
audpsychometric-0.1.1.dist-info/top_level.txt sha256=ds08jiJU2pfHcVxTsOzxdqFzzLGmsxnpdR_GyxWtVvc 34
audpsychometric-0.1.1.dist-info/RECORD

top_level.txt

assets
audpsychometric
docs
tests