AttentionMOI

View on PyPIReverse Dependencies (0)

0.0.7 AttentionMOI-0.0.7-py3-none-any.whl

Wheel Details

Project: AttentionMOI
Version: 0.0.7
Filename: AttentionMOI-0.0.7-py3-none-any.whl
Download: [link]
Size: 249644
MD5: 956f77ebbe1d27e9771f098b283ed083
SHA256: e1d860646652e1f5fef5626452ddf6e1420801a710c5122c27aadbc107ff259e
Uploaded: 2023-04-10 11:05:23 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: AttentionMOI
Version: 0.0.7
Summary: A Denoised Multi-omics Integration Framework for Cancer Subtype Classification and Survival Prediction.
Author: Billy
Author-Email: liangbilin0324[at]163.com
Home-Page: https://github.com/BioAI-kits/AttentionMOI
License: Apache License 2.0
Requires-Python: >=3.9.*
Requires-Dist: captum (==0.4.1)
Requires-Dist: mygene (==3.2.2)
Requires-Dist: openpyxl (==3.0.9)
Requires-Dist: packaging (==21.3)
Requires-Dist: pandas (==1.2.5)
Requires-Dist: pandocfilters (==1.5.0)
Requires-Dist: seaborn (==0.11.2)
Requires-Dist: torch (==1.13.1)
Requires-Dist: scikit-learn (==1.2.2)
Requires-Dist: numpy (==1.23.5)
Requires-Dist: matplotlib (==3.6.2)
Requires-Dist: xgboost (==1.7.4)
Requires-Dist: livelossplot
Requires-Dist: tensorboardX
Requires-Dist: tqdm
License-File: LICENSE
[No description]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.1)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
AttentionMOI/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
AttentionMOI/deepmoi.py sha256=LCkGvec8FxI3XsIjvLXRD_TQvGKulJsONxWs5EbIhS4 2673
AttentionMOI/src/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
AttentionMOI/src/explain.py sha256=0fx3OOMJqnpdhZv460-9wkx2jqzrcQAMdM9bQibBmUA 488
AttentionMOI/src/feature_selection.py sha256=_PtxiOkyaJga3HTik71-bI3-yeRS4CImZU60Avd9Q8M 2944
AttentionMOI/src/fsd.py sha256=XVBFAfoReEe-oaMIbhg9BNFZisV6V8yucYYV4aBqbnw 7085
AttentionMOI/src/main.py sha256=H224nx6AM1nAt9UVEz0vOd_qN4vTR1a4ND4rY7YDTAw 1962
AttentionMOI/src/module.py sha256=75uYMT7zX0tAm54sVbN6iCVrUieoKcrawHYYENBF62Q 3439
AttentionMOI/src/prediction.py sha256=5U9zmRKcMzSNQaLA3dEM7zUQU0-P9qzUAqK9DVAZCCc 7379
AttentionMOI/src/preprocess.py sha256=bN3YVzUsO4jZnaoQklY0DRoTtyNxwIdRzAMcTJ2Di6g 2164
AttentionMOI/src/train.py sha256=WFq9C5aXptjSdrkiG60di5YZqESo4w3-m9qiMoY5kRw 23921
AttentionMOI/src/utils.py sha256=Q32Im8MSCPzvfGmdcwTapQDtZY5ZmO_3HyKiLAUciPY 9205
AttentionMOI/src/moanna/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
AttentionMOI/src/moanna/__meta__.py sha256=JPNE-XvvYi_U-j7fZzVJ5t96iQJhsD-HzT6GfW1xvQs 22
AttentionMOI/src/moanna/cli.py sha256=WcRfXS1lZoGa1IbJXZpKCPu_IqT8zCc_U76h66pBzRI 2734
AttentionMOI/src/moanna/main.py sha256=l4qVea09EjBNDhVsdXyvB_PDUmr9twCStvEghpJzieE 7542
AttentionMOI/src/moanna/helper/ClusteringMetricsHelper.py sha256=VPC5FCmWdkBBNI6W_WWhAnhD4ji_PkRUaGRJO_5Qc2c 3501
AttentionMOI/src/moanna/helper/DataCleanUpFunctions.py sha256=1c5_SQR-Z1d2dNPHxkTLRA2Un8LDL64OCt-UaXqmvaM 21017
AttentionMOI/src/moanna/helper/SurvivalHelperFunctions.py sha256=LNN5g5NjzofoRqq1ZAGem2E4-GLI4Gzid9R2XKEot1w 2994
AttentionMOI/src/moanna/helper/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
AttentionMOI/src/moanna/model/Autoencoder.py sha256=0zyiJemi7Mf3ar0nULYha4jWysOUF77aZv5UfEALPkA 6780
AttentionMOI/src/moanna/model/ClassificationModel.py sha256=9fDMe4Sm0et7G4dpmd3FaBUgWM0CESxIulh6Bp0-ZBw 5066
AttentionMOI/src/moanna/model/Moanna.py sha256=MlISDVzL65pnYVum_hZr02gqVYt1iUpaD_j9jddO36g 1458
AttentionMOI/src/moanna/model/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
AttentionMOI/src/mogonet/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
AttentionMOI/src/mogonet/feat_importance.py sha256=yo8AF770Ve--6DPDZ0lju0IdNRcVba1piHNL0W1iTEs 3753
AttentionMOI/src/mogonet/main_biomarker.py sha256=V7DYKFPHSfcalaaaBjsUKXi8mWG6xv25IPwZE1TxMAE 675
AttentionMOI/src/mogonet/main_mogonet.py sha256=U3_RMQ0M1yt0OAsgnrcL6ZPvNfhyx2FvWqgjzrq5UJs 1150
AttentionMOI/src/mogonet/models.py sha256=SA4Y059nxzadE35VJjtl-6pzenyUjJc2keKCU14gE4M 3711
AttentionMOI/src/mogonet/train_test.py sha256=yFCQMsg6CW2VipNY96XHncho2nlR9zRQYVM05M6hfqw 9308
AttentionMOI/src/mogonet/utils.py sha256=yg3H625PFe77YYbw2nmhNQAV0J3d5l_mR_nyUS4TDUk 4594
AttentionMOI-0.0.7.data/data/cnv.csv.gz sha256=HRD9nK_v2p4Bk5H2NqzTOY2pMhm4Ryne6rjFVxvzq2g 7419
AttentionMOI-0.0.7.data/data/label.csv sha256=ISrLRj-wg88d3ICUdSkhLi0bAN-apIVYt0oWWVUqtTo 13651
AttentionMOI-0.0.7.data/data/met.csv.gz sha256=R9PfEgOr7i64eX5vsF-en-zAU_nGw2ohxCVqthNNYt4 77257
AttentionMOI-0.0.7.data/data/rna.csv.gz sha256=Ew83Ny8S82umIrqDnF3Ls2-k2oNVDwy2138-PVCtWMQ 118903
AttentionMOI-0.0.7.dist-info/LICENSE sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY 11558
AttentionMOI-0.0.7.dist-info/METADATA sha256=e-zDglj1R04P69-i4jJYdDLlwB8-Xx29gku2zY_Kr9k 861
AttentionMOI-0.0.7.dist-info/WHEEL sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA 92
AttentionMOI-0.0.7.dist-info/dependency_links.txt sha256=MnWs8ot4ESwwWfZP0UFDfErFE1XU-iode8vpkmgFBmQ 72
AttentionMOI-0.0.7.dist-info/entry_points.txt sha256=D450vC03ZppKLN8MlwQ0bEMVEoJO4vJIOEenIkeW884 50
AttentionMOI-0.0.7.dist-info/top_level.txt sha256=FUAJMgh-rZkZpMHWiZesJEOj3ZNvYph5RiSZV89R0bE 13
AttentionMOI-0.0.7.dist-info/RECORD

top_level.txt

AttentionMOI

entry_points.txt

moi = pipeline_moi:pipeline_moi
https://pypi.org/simple/
https://download.pytorch.org/whl/cpu#egg=torch