akerbp.models

View on PyPIReverse Dependencies (0)

1.20220304142108 akerbp.models-1.20220304142108-py3-none-any.whl

Wheel Details

Project: akerbp.models
Version: 1.20220304142108
Filename: akerbp.models-1.20220304142108-py3-none-any.whl
Download: [link]
Size: 39069
MD5: a8a125d439e3fb6ad5e9c6a6c18cb95b
SHA256: 73d00f36181e11878811150736508882267bf00d276e606cd96d540d64607aac
Uploaded: 2022-03-04 13:21:44 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: akerbp.models
Version: 1.20220304142108
Summary: Machine Learning Models for Petrophysics
Author: Alfonso M. Canterla
Author-Email: alfonso.canterla[at]soprasteria.com
Home-Page: https://bitbucket.org/akerbp/models/
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Python: >=3.8
Requires-Dist: xgboost (==1.3.3)
Requires-Dist: joblib (==1.0.1)
Requires-Dist: numpy (>=1.19.5)
Requires-Dist: pandas (>=1.3.2)
Requires-Dist: scikit-learn (>=0.24.2)
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 3148 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
akerbp/models/__init__.py sha256=o4Si_5HB77oSzM4M42W5oO6w8RQtKwluOPH08yL-bDg 5782
akerbp/models/classification_models/__init__.py sha256=niIv7EYcHuIUGTrz0ylguNWC2MLhfTOxKpsgU_3ctDY 4048
akerbp/models/classification_models/hierarchical_model.py sha256=p4bE_rNlmc4L0m4TGZKzDEb8gZ0ICpNIIZR-wvLJtFY 3890
akerbp/models/classification_models/nested_models.py sha256=xU8_z2t7bxnELevDPzYCoB6wUFu__eE33jt1CaMIjW4 3011
akerbp/models/regression_models/__init__.py sha256=OE1a6wzBZJd1sxfSrcZtUoQxqKDB0VWdgnZuJQFALg8 5323
akerbp/models/rule_based_models/BS_helpers.py sha256=jyUxzDxXX565TlTpu_yoRYes4Hsp6DFsXf4YETuc9-c 1994
akerbp/models/rule_based_models/__init__.py sha256=k5GJfH5--6eCuzm8AZOUKqEXCjELQKDU2htqb_2b-UU 6141
akerbp/models/rule_based_models/casing_helpers.py sha256=sTzWX899YXzVIchSoD9UNeSLpvNTGyQ6YOsgMSzFOY8 3281
akerbp/models/rule_based_models/correlate_helpers.py sha256=B42pl7Xp71RLMjBN_nneCg8VTekWS3zQAqcb9jiOC20 4813
akerbp/models/rule_based_models/crossplot_helpers.py sha256=cfuBV1Es7ULmJJw96iQ46khBZBmzg0XM5p_awbVoa_I 13057
akerbp/models/rule_based_models/dencorr_helpers.py sha256=i_FnxhQIbvSwYTB_PgeVe5f0SO0Ua8bZTwtdiDh_CXE 1734
akerbp/models/rule_based_models/flatline_helpers.py sha256=qbIWoNnr8IALSOHyzjgI_7SuDAyLVIOelzSXjwLi9Wk 10725
akerbp/models/rule_based_models/flatline_helpers_old.py sha256=eEAnh8_dqajqsOtp1agiOVdA5xVF_E89LJK711x9ZVw 9677
akerbp/models/rule_based_models/helpers.py sha256=z82kf0v03XBsMOKftVfIBJRATjMxGfda_w2ELsmMFmo 8372
akerbp/models/rule_based_models/logtrend_helpers.py sha256=xD3TotLABhkgymS0qyx57Mlpk6BBBiIBoN8mj747_eA 3411
akerbp/models/rule_based_models/outliers_helpers.py sha256=IlBlYcXRSiTEsmV3CgCj7BQpKCHvxo4EJGNO5Ta2GXg 3113
akerbp/models/rule_based_models/resistivities_helpers.py sha256=wG1nVYW0CchZtenWB-ECXz1XOY-WsjWLqnsImAfv3FA 3209
akerbp/models/rule_based_models/umap_helpers.py sha256=zZQ4RAgVYrid3SDVaBs6O9iGhfmA0GlLciI7twoKYT0 2406
akerbp/models/rule_based_models/washout_helpers.py sha256=X751PVU59m6nPRwFIAYA1yf1nR6wbXUGoV0LowjYW0A 3294
akerbp.models-1.20220304142108.dist-info/LICENSE sha256=olrEDKQMQ2Bv4SQSdRKnF4sHU5OKNZvWiWSx5gutP-E 11320
akerbp.models-1.20220304142108.dist-info/METADATA sha256=o6aJ4ayWRzM6LirZ3sq0NjXtiv_dmPZjVXFoe4S4wZk 3824
akerbp.models-1.20220304142108.dist-info/WHEEL sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o 92
akerbp.models-1.20220304142108.dist-info/top_level.txt sha256=N5spQy5S_sKIyqp73tE8vX8IHvH_gW47aak0tvrMEOM 20
akerbp.models-1.20220304142108.dist-info/RECORD

top_level.txt

akerbp
badlog_score