ageml

View on PyPIReverse Dependencies (0)

0.2.0 ageml-0.2.0-py3-none-any.whl

Wheel Details

Project: ageml
Version: 0.2.0
Filename: ageml-0.2.0-py3-none-any.whl
Download: [link]
Size: 202676
MD5: 32cb81c059ee5de1289d5aa3c3dc42b8
SHA256: 66973b79e56578fef76b99c16ead0944a2ffebc1e8cb4db780e6aebe2673fb7e
Uploaded: 2024-09-24 09:15:37 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: ageml
Version: 0.2.0
Summary: AgeML is a Python package for Age Modelling with Machine Learning made easy.
Author: Computational Neuroimaging Lab Bilbao, IIS Biobizkaia
Maintainer: jorge.garcia.condado
Maintainer-Email: jorgegarciacondado[at]gmail.com
Home-Page: https://github.com/compneurobilbao/ageml
Project-Url: Repository, https://github.com/compneurobilbao/ageml
License: Apache 2.0
Keywords: Machine Learning,Age Modelling,Brain Age
Classifier: License :: Other/Proprietary License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.9,<3.12
Requires-Dist: hpsklearn-compneurobilbao
Requires-Dist: matplotlib (==3.5)
Requires-Dist: numpy (<2.0.0,>=1.24)
Requires-Dist: pandas (>=2.0.2)
Requires-Dist: pillow (<11.0.0,>=10.3.0)
Requires-Dist: scikit-learn (==1.3)
Requires-Dist: scipy (>=1.10)
Requires-Dist: statsmodels (==0.14.0)
Requires-Dist: xgboost (<3.0.0,>=2.0.3)
Description-Content-Type: text/markdown
[Description omitted; length: 7600 characters]

WHEEL

Wheel-Version: 1.0
Generator: poetry-core 1.7.0
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
ageml/__init__.py sha256=hJyiJyPLX3W-5XBX13T4-i0nINyq5WkxMRCW32Gmz04 213
ageml/__main__.py sha256=m4LC0AeEoJVQ6NfnR3ZPIfkgA-zoEwLpfvIw2zibCqo 151
ageml/commands.py sha256=eyZ1IKG1rqNgqbLfAPFuDMuMaM-Mu7hynC3X9FcVB1w 13705
ageml/datasets/.gitkeep sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ageml/datasets/__init__.py sha256=Jf2_SLr1iWpS-yYCJz72gxXgWZY0zNCUYjnkyQ6ZMwk 261
ageml/datasets/generate_synthetic_data.py sha256=ARtq54XQQd40HKAZk8H7EVCc3s7BfggR99UMqsyZQv4 561
ageml/datasets/synthetic_data.py sha256=-9w9RidvS4vggMVtmCQdn_q7av3UXF1WIs3Yw1ZVl5U 10516
ageml/datasets/toy_clinical.csv sha256=JLiqjgLFTaY26zIvyU-d9KKE-QLvDbkZdWohPL89ij8 20900
ageml/datasets/toy_covar.csv sha256=MeH2R59atb6juTTH3gSD0we8qMaXa9L4YGAVhQhsV9M 24382
ageml/datasets/toy_factors.csv sha256=ysgdKK7EPS300Hu-vgwzvY_k077cUjYFKGFeafxHiL4 62839
ageml/datasets/toy_features.csv sha256=_u18b1D0UZnbumUxi_P5pl4fgDPD4gWHq5SpGRBvRJ8 248200
ageml/datasets/toy_systems.txt sha256=c73VnGP1uUvetLOwbmrzMtoSkqLNRNHVVhIRz1vsMso 56
ageml/messages.py sha256=PFrZuQIcasN6pFFCXPkzVjGddLox3d5xUz_CmlPnrrw 6992
ageml/modelling.py sha256=WWhOAnG6aRadWsRVqJdGoJrqdjb1kstl1HV-5pdRs9U 23953
ageml/processing.py sha256=uPCdmxeHlpx9m-iOZMhO5R-EXQPNY3ykeMOfMXaO2-8 2357
ageml/ui.py sha256=Lwf5wFQQ-WSotw23VfdpEybRVWd0GxpYOwGJWKxEGVs 73887
ageml/utils.py sha256=Hg21ep1yYcdS8XEsO8eFuO4dcUCcgS-tEJLL3mp0sc4 3073
ageml/visualizer.py sha256=6ljnD-GaL5DLklc0I1-UQKavVlgiuHbHM7m0TFndgG4 12250
ageml-0.2.0.dist-info/LICENSE sha256=psuoW8kuDP96RQsdhzwOqi6fyWv0ct8CR6Jr7He_P_k 10173
ageml-0.2.0.dist-info/METADATA sha256=dbTMEx1fDkC7hB8Ez09GZLhrn10E3LXVOIkrMCmLpwk 8797
ageml-0.2.0.dist-info/WHEEL sha256=d2fvjOD7sXsVzChCqf0Ty0JbHKBaLYwDbGQDwQTnJ50 88
ageml-0.2.0.dist-info/entry_points.txt sha256=tHpYJV0TzaSE20ixOKcGaBQhTOr0orm_K64ZFrB4a0A 295
ageml-0.2.0.dist-info/RECORD

entry_points.txt

ageml = ageml.__main__:main
clinical_classify = ageml.commands:clinical_classify
clinical_groups = ageml.commands:clinical_groups
factor_correlation = ageml.commands:factor_correlation
generate_ageml_data = ageml.datasets.generate_synthetic_data:main
model_age = ageml.commands:model_age