adversarial-lab

View on PyPIReverse Dependencies (0)

0.0.1rc0 adversarial_lab-0.0.1rc0-py3-none-any.whl

Wheel Details

Project: adversarial-lab
Version: 0.0.1rc0
Filename: adversarial_lab-0.0.1rc0-py3-none-any.whl
Download: [link]
Size: 30093
MD5: adb806235b09a4e28b6160314ea8ea40
SHA256: 30e48d27d93036de1fe4cbd62d80b370bb6124b45167702f5cdeda901d24608c
Uploaded: 2024-10-16 01:00:43 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: adversarial-lab
Version: 0.0.1rc0
Summary: A unified library for performing adversarial attacks on ML model to test their defense.
Author: Pavan Reddy
Author-Email: preddy.osdev[at]gmail.com
Home-Page: https://github.com/pavanreddy-ml/adversarial-lab
License: MIT
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Python: >=3.9
Requires-Dist: pytest
Requires-Dist: pytest-cov
Requires-Dist: flake8
Requires-Dist: mypy
Requires-Dist: Sphinx
Requires-Dist: pytest; extra == "testing"
Requires-Dist: pytest-cov; extra == "testing"
Provides-Extra: testing
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 3018 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.44.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
adversarial_lab/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
adversarial_lab/attacks/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
adversarial_lab/attacks/blackbox/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
adversarial_lab/attacks/whitebox/__init__.py sha256=Vb5GFTXiZGQnImLD3LK78XQpaoUKieqpoVPSuGFZv80 172
adversarial_lab/attacks/whitebox/wb_misclassification.py sha256=nPsZ6jbSP8fhVoreWSpS0-FqmmN3toaCMDHKaypLs6g 10760
adversarial_lab/attacks/whitebox/whitebox_attack_base.py sha256=Ri2h17FKsVP_sI79u90gc6594cF8t4584np6sFCoU54 7966
adversarial_lab/core/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
adversarial_lab/core/getgrad/__init__.py sha256=h8De38VD8bub4okvB7obgmlyQFN5zSRGdN2hgbG19iE 113
adversarial_lab/core/getgrad/getgrad.py sha256=fvGhchuwsadP3A5lPnCckaQfLUScPqVwQkZEp4hQ_fk 4426
adversarial_lab/core/getgrad/getgrad_base.py sha256=5rZs1HbabkyKzNGk2zDerIDdLx9ShJCgYEyZ7hKJ3sk 1831
adversarial_lab/core/losses/__init__.py sha256=-vSsImIW-ftxY1lg338d8gCbOyPoHbx_J2BtHbCKAhU 199
adversarial_lab/core/losses/categorical_cross_entropy.py sha256=oXAxddkVGTfpNOZRfL1feqc_oLvuedBzBJ7kvlho4OM 1050
adversarial_lab/core/losses/loss_base.py sha256=YwWFsc4Xij4q5P2goEDiOTe5H4XJURpYNlb5pM5bHSw 1474
adversarial_lab/core/losses/loss_registry.py sha256=ED9J-28eCjq4pokeEyrwwg8QzOqgE5RHEuV2uFY0g8g 440
adversarial_lab/core/losses/penalty/__init__.py sha256=j0PnyzfsyVmyyHnu3Rg5wQAEtAuWpy2VM_8uVUYYHCk 53
adversarial_lab/core/losses/penalty/lp_norm.py sha256=KFvTOqDerOZHO4XuEXn60vYjpTtwD_CCht74Lfx9zik 1179
adversarial_lab/core/modelinfo/__init__.py sha256=v3K1e_dMGezI3AxZp3g4O7A1qz6UnnUWjEYo_utLL80 162
adversarial_lab/core/modelinfo/modelinfo.py sha256=7aCzxuxb3ZWX8RTTqZkTc_Kx8VpxRdxag019KiulVZ0 4438
adversarial_lab/core/modelinfo/modelinfo_base.py sha256=y2glq1dcEK3rQcnCli_yUGv9bX7N3nSUc-VIw1KtceU 289
adversarial_lab/core/noise_generators/__init__.py sha256=6MBJ8OF-JvlNNHOQ5SLieSysDn8yyBQ_G0ujYrmIWVU 211
adversarial_lab/core/noise_generators/additive_noise_generator.py sha256=hW7nJGw0XZZWpHGrnneJO8MB0-v4MKXgY0uIiEYpX-8 4623
adversarial_lab/core/noise_generators/noise_generator_base.py sha256=TCWEI9tQXkUto8Oc4D9dKj_3wz9sg7F2vkGdVthFRqM 2747
adversarial_lab/core/optimizers/__init__.py sha256=LgUr2Z2jqbSGZ0RvC8Tqf0dfb4POVVIl6kGUGX0SIUE 168
adversarial_lab/core/optimizers/adam.py sha256=hwcFOImpMUvOCUetESgxA-dFQXFWDo3WUJhWxiEKdss 1898
adversarial_lab/core/optimizers/optimizer_base.py sha256=PaeAdiXHzmVQZseRfEkO6R4efL1qwy8Kga2ZsOnFSS4 1626
adversarial_lab/core/optimizers/optimizer_registry.py sha256=_2AUw8G6k0IYHDezaVykwfCSl-6daii0krZgIh153lY 462
adversarial_lab/core/preprocessing/__init__.py sha256=Jd6mCS9Qg5prrKMVDyW_AsX2TzyfhUc_FtfgXlDZYqs 234
adversarial_lab/core/preprocessing/no_preprocessing.py sha256=aLS7Z_-fKFoSTWLKSklVAKIwGS_Ru4jZp6SYrlMW-DQ 175
adversarial_lab/core/preprocessing/preprocessing.py sha256=KTpz0e3hXZ2IkceWnwMfkY8Zsm5QKfIFX-Rzjfu8Up0 246
adversarial_lab/core/preprocessing/preprocessing_from_function.py sha256=K4nCSJqm400ikqy2Fq8_RsHCcTky23qVr0j671c85rU 453
adversarial_lab/core/tensor_ops/__init__.py sha256=TSzUOQJc0iKT1zd91RQKrQsVE95QD5kYk3RC3upJOFw 62
adversarial_lab/core/tensor_ops/tensor_ops.py sha256=hncn54boQKXYAeKkSICa1MbO55LghX1MKN5SjQQwh1I 2144
adversarial_lab/core/tensor_ops/tensor_tf.py sha256=vL9UIv01_uOHHuRY2BdEa7PtyW5f6W_-ZojP7kSd2Hw 3642
adversarial_lab/core/tensor_ops/tensor_torch.py sha256=fL3Qk8ipgU-THh8YXsJO9l_USPCbxB7fN-NfJhVVZIs 956
adversarial_lab/defenses/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
adversarial_lab/exceptions/__init__.py sha256=bf66FIIa2qyld65lpVahI_f1fZIpvU-DDcFyMVjBg4M 118
adversarial_lab/exceptions/exceptions.py sha256=z58h8zfcdz8sFvFB-V7BE4mjK3ttILaizRfEa0jwvYI 1346
adversarial_lab/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
adversarial_lab/utils/plotting.py sha256=XXIkZBHzIOnK4vetyapNrNOd1i0gZ3ZenaZItAgNfcM 910
tests/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tests/attacks/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tests/attacks/basic.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tests/model/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
tests/model/losses.py sha256=gZXJY5PslmdWcAyH8sSOcTnRgJdhikV4c7okaXRLUIA 5341
adversarial_lab-0.0.1rc0.dist-info/LICENSE sha256=mfTbPCgX3kMOaUihcV4y3zUoNFqxUUT3K6asLM712bo 1089
adversarial_lab-0.0.1rc0.dist-info/METADATA sha256=Z-IYC7drRcWXV7I5OFSQK-olIh-1pTRq27oUit3UmjM 3884
adversarial_lab-0.0.1rc0.dist-info/WHEEL sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc 92
adversarial_lab-0.0.1rc0.dist-info/top_level.txt sha256=RTtm0mqUL9-a_aQAvfvnIp8YTB30BX-zYcyqRkFT3mA 22
adversarial_lab-0.0.1rc0.dist-info/RECORD

top_level.txt

adversarial_lab
tests