adv-lib

View on PyPIReverse Dependencies (1)

0.2.2 adv_lib-0.2.2-py3-none-any.whl

Wheel Details

Project: adv-lib
Version: 0.2.2
Filename: adv_lib-0.2.2-py3-none-any.whl
Download: [link]
Size: 83524
MD5: fc334548eb79d5ce43ec83466c520816
SHA256: d1e822b0964523eceb29ab7a7f182bd676f2e44f3304e53ca3165ab71576ead6
Uploaded: 2024-10-10 02:45:32 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: adv-lib
Version: 0.2.2
Summary: Library of various adversarial attacks resources in PyTorch
Author-Email: Jerome Rony <jerome.rony[at]gmail.com>
Project-Url: Repository, https://github.com/jeromerony/adversarial-library.git
License: BSD 3-Clause License Copyright (c) 2020, Jérôme Rony All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Classifier: Programming Language :: Python :: 3
Classifier: Development Status :: 3 - Alpha
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.8
Requires-Dist: torch (>=1.8.0)
Requires-Dist: torchvision (>=0.9.0)
Requires-Dist: tqdm (>=4.48.0)
Requires-Dist: visdom (>=0.1.8)
Requires-Dist: scikit-image; extra == "test"
Requires-Dist: pytest; extra == "test"
Provides-Extra: test
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 10152 characters]

WHEEL

Wheel-Version: 1.0
Generator: setuptools (75.1.0)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
adv_lib/__init__.py sha256=m6kyaNpwBcP1XYcqrelX2oS3PJuOnElOcRdBa9pEb8c 22
adv_lib/attacks/__init__.py sha256=uhRpAwLq6OZ-AqmQWMs8zah2ZMVKuL2SCT80QrL-5m4 581
adv_lib/attacks/augmented_lagrangian.py sha256=E27jDSvsEc512uWtjv-C9ooQmz9SKMBeYlCGn9EaMow 9707
adv_lib/attacks/auto_pgd.py sha256=nZmBY5oEjfPvlSmkqeRWqhp37GyXwBN-Rw98QABrR5g 20212
adv_lib/attacks/boundary_projection_tf.py sha256=sNCKkqHkFGHA5mfVnPG2wpWIFkqT8g7m15FN05c21t4 6161
adv_lib/attacks/decoupled_direction_norm.py sha256=ud0r_l4IrG18gzdPCZ_HxfUUz-Ih-R06dZv518HiGEo 4172
adv_lib/attacks/fast_minimum_norm.py sha256=2k4u7eRZofz9fH3Qdqy04EAIxZbyKkuz5sgVUgv79W8 7980
adv_lib/attacks/primal_dual_gradient_descent.py sha256=8CWSWeWP69Fo2IP15op14BaSf878qdfHFqBTsCrh3mM 15363
adv_lib/attacks/projected_gradient_descent.py sha256=krkTptH3ldOg5SudTtWGKIg0lM6Nft60lJhQfGcWKyA 4027
adv_lib/attacks/self_adaptive_norm_update.py sha256=aeFRICK_5SCxmIEij6cEpuL1gThvQub6tzTQsXH0LNk 4928
adv_lib/attacks/sigma_zero.py sha256=t1S215zaGe0BSrc3qtqOw6pir-dKJCr2EcGiYkktOjo 4258
adv_lib/attacks/stochastic_sparse_attacks.py sha256=qvXuZvZ8DatqXqVAAb8O7UR8Z84CLe2EECgHvvWEHv8 10847
adv_lib/attacks/structured_adversarial_attack.py sha256=FYc7fhad_Eb6VnPmnHhzjRtwv4hqhNWRk1wJeq_CcpQ 12498
adv_lib/attacks/trust_region.py sha256=lnW-_7oRbNRp-yOLMuFuE00JVMBJIR-FgN0VqpwhT34 5131
adv_lib/attacks/carlini_wagner/__init__.py sha256=-5ydyRv-Yh1StwrZx6M3P-qdq4_e-eC8euQp6L7uqbE 71
adv_lib/attacks/carlini_wagner/l2.py sha256=OJcdsW6xSbL6ryrzxNp83HABb_aO_iTVdgMIuaWNMfg 6477
adv_lib/attacks/carlini_wagner/linf.py sha256=21hUHIY7K_zKw50ohtPy4xyycWnB5Xj2bulPdyBTtPM 6720
adv_lib/attacks/fast_adaptive_boundary/__init__.py sha256=Lw9MxSEycVeRrLg9uV--8Qr4Yw5JWB3MFgTz6p0fpFw 40
adv_lib/attacks/fast_adaptive_boundary/fast_adaptive_boundary.py sha256=b-zlAyYAlZDacwPd_OT76Cy9HuRQWnnJY8GofS-U47c 9509
adv_lib/attacks/fast_adaptive_boundary/projections.py sha256=yJBzfZ6ltkdEGSmcMdIw-UDCySaN9QgCDxB2Bk-39AY 5340
adv_lib/attacks/perceptual_color_attacks/__init__.py sha256=tUNa73Fg23vDFgOoU-HwMtFyZB5_PHAg27GHwW8g6lU 49
adv_lib/attacks/perceptual_color_attacks/differential_color_functions.py sha256=iJeO7YdU8komxiCiDlxbgVtmhqAbTUxofCBuiw_jMAM 5939
adv_lib/attacks/perceptual_color_attacks/perceptual_color_distance_al.py sha256=zL9YPY9P3LrtijYMu4SHlFNZrf51cNOpAKDGVFLgyjc 5458
adv_lib/attacks/segmentation/__init__.py sha256=s28JSllaiV5kbihUjLg8z7zqlUOQaSZq7tspAhjQPPw 143
adv_lib/attacks/segmentation/alma_prox.py sha256=yblUSj-LoUBcJLwIETFxw5_0Xox2pZAlSD_M-Y5sntU 12983
adv_lib/attacks/segmentation/asma.py sha256=PrjduN0yWmkv5TMlSMFOzyO-K7rvuxCFxR7h1hIzZpE 3795
adv_lib/attacks/segmentation/dense_adversary.py sha256=FYFsi7JCVR0xS_9DWUoVIjakhWaX19MYBA3UAgM9o6k 3029
adv_lib/attacks/segmentation/primal_dual_gradient_descent.py sha256=cIxkkqhP3S6jEH7EqfXMnRgvWeSTMB1cqP7iQ2QtzYc 15264
adv_lib/distances/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
adv_lib/distances/color_difference.py sha256=2-6_fJkHIXMy6wUZj9niPpje-z0yEPAFHRkWJu6mUmg 7845
adv_lib/distances/lp_norms.py sha256=w-P81Abl_JyBFWvDtYaBsOGQCpxiDM5BSeTR3uNvhg4 539
adv_lib/distances/lpips.py sha256=r-USHIrIMZ_hkcnTRV6OTuZ-pyP0Pxrcla2Gg6cGte8 3671
adv_lib/distances/structural_similarity.py sha256=tVBaFvkSBKPrvlS1uGfiH-lZKBjDif8rPMtkyFr7XZk 5814
adv_lib/utils/__init__.py sha256=hOGzggtuaGZAwGmEzJHCPIm1znbi8nFwHtVTbSTbF64 116
adv_lib/utils/attack_utils.py sha256=7HMK4z8OTPXy_18KctBTr58tAGxxx0vxt_rbJ03EWIU 9451
adv_lib/utils/color_conversions.py sha256=S8NH5FujlJZq09hPRH5vJ8CaV87py2MKC62NGD-plrk 2799
adv_lib/utils/image_selection.py sha256=Ymi6xKwuo-VtFh1EapdWChddH42D4hTjvUC_biTErBM 1053
adv_lib/utils/losses.py sha256=Lp1BSTJYQa-GZCcIz71gG6GM79Vl6YsNf_NQb221ND8 1296
adv_lib/utils/projections.py sha256=DEfM3yMkJQENzdbsCdxEIClZJLiM4OcEh-TbmIsJKII 3472
adv_lib/utils/utils.py sha256=MwkigrWAxXCG1MS9f4sVopl19gMDiY8I5nRohAJaPxE 1664
adv_lib/utils/visdom_logger.py sha256=eVk54f-ViXHLu2JVyFJ2Sqdy-26GQyw_hr3uhHvQ74I 3702
adv_lib/utils/lagrangian_penalties/__init__.py sha256=yai7NQi36FIBMjgBGGG9zHa3EVQa0wfMuMPg3Lvnm_w 40
adv_lib/utils/lagrangian_penalties/all_penalties.py sha256=D2zlmFVDBB51q7V_-XlHIe2rgJ8vmo3cc1YpSICZsNY 1677
adv_lib/utils/lagrangian_penalties/penalty_functions.py sha256=JauwnXW9HPVowxNptKtiKaqmB0btqy08qlxHt1K82fE 2401
adv_lib/utils/lagrangian_penalties/univariate_functions.py sha256=fdFfeVkSK4-RKUC6da0kOnIp4X7r2Yoi2iCvKyh3tjo 7220
adv_lib/utils/lagrangian_penalties/scripts/plot_penalties.py sha256=LdUu5sxHHr9hAkhEWeojYNhuF730oh7bUk3txPbPrtU 1318
adv_lib/utils/lagrangian_penalties/scripts/plot_univariates.py sha256=_nDpEZd4nGc4CDhYeFZXfdWZ3BFT7WoC9KioG68i5N0 894
adv_lib-0.2.2.dist-info/LICENSE sha256=eTYNe5tQEMAv2qmDM13nuZJQBm7lAp8aos9OskH9WKg 1521
adv_lib-0.2.2.dist-info/METADATA sha256=ofG1rHQGbc5cZ0QWaKPgPyzCpYmYSWuGDBoJHJYT9yo 12738
adv_lib-0.2.2.dist-info/WHEEL sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ 91
adv_lib-0.2.2.dist-info/top_level.txt sha256=4Bc-PUVI_SPKaTWVEpCYBWBPBZtSoehkyDClNVbcHS8 8
adv_lib-0.2.2.dist-info/RECORD

top_level.txt

adv_lib