adanet

View on PyPIReverse Dependencies (1)

0.9.0 adanet-0.9.0-py2.py3-none-any.whl

Wheel Details

Project: adanet
Version: 0.9.0
Filename: adanet-0.9.0-py2.py3-none-any.whl
Download: [link]
Size: 119171
MD5: b1c701bb91403aa42a7180497b78761d
SHA256: 75decb63b3b6fd1feb5dc73c42aaafa7b6195e9092ffb0fc6540bdf1d5490bd1
Uploaded: 2020-07-09 21:03:28 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: adanet
Version: 0.9.0
Summary: adanet is a lightweight and scalable TensorFlow AutoML framework for training and deploying adaptive neural networks using the AdaNet algorithm [Cortes et al. ICML 2017](https://arxiv.org/abs/1607.01097).
Author: Google LLC
Home-Page: https://github.com/tensorflow/adanet
License: Apache 2.0
Keywords: tensorflow machine learning automl module subgraph framework ensemble neural network adaptive metalearning
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Dist: absl-py (<1.0,>=0.7)
Requires-Dist: six (<2.0,>=1.11)
Requires-Dist: numpy (<2.0,>=1.15)
Requires-Dist: nose (<2.0,>=1.3)
Requires-Dist: rednose (<2.0,>=1.3)
Requires-Dist: coverage (<5.0,>=4.5)
Requires-Dist: protobuf (<4.0,>=3.6)
Requires-Dist: mock (<4.0,>=3.0)
[No description]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.34.2)
Root-Is-Purelib: true
Tag: py2-none-any
Tag: py3-none-any

RECORD

Path Digest Size
adanet/__init__.py sha256=kvjj9kwgPXyL4lR-oN1-Rnfz8q-9ct7J7SDs9OyBnoI 1948
adanet/version.py sha256=zQH_8-fyfLnTqNUFge5w93LhzJKSdyFu7QcLGgrkJbc 744
adanet/autoensemble/__init__.py sha256=g5cvzNZoL0YXacugjiEXP3WKYyFYBxtoHhyevbtq9XY 1047
adanet/autoensemble/common.py sha256=ek4kQzSD5GNyaWvLP-i6bzqldfEw7_NroPnfGbyR7bQ 10818
adanet/autoensemble/estimator.py sha256=k7A0KIjZIpdLIV4qRgVRuMuZCQPf41rGmGUviJnZoYQ 17628
adanet/core/__init__.py sha256=UJrzqMF6LfRw0JKJca_xovG51ufKbRku3FwDJEO2YLc 1083
adanet/core/architecture.py sha256=fwDaiDGM6NnyReQ_Id5Q9wqU-ijbZnfxLzBQWhLLbCw 5714
adanet/core/candidate.py sha256=NJz3Z6ltmEssB7PuwgvlfQShXGmOnWEAxhyA4zHQXgU 4987
adanet/core/ensemble_builder.py sha256=C-MKXKTFXmPMfPJBsuuX7HXNEbVShAItKejz_YgkSxM 32594
adanet/core/estimator.py sha256=9Zb0q9kk-VwphsQIUSgdEZ8RqwJgls8MqheIQAjzHok 97558
adanet/core/eval_metrics.py sha256=kdnBE6GocwABqPkUgWeR-E62eRMjA25x35uelG7Kkic 16930
adanet/core/evaluator.py sha256=yoPpYXFiY2D1zNE0vWa0dP-JUCMToypqwKTqyH52B68 4624
adanet/core/iteration.py sha256=e06iCYoIKuUe88MBs0UXRpYGx8EhxGkXNa0NfKdykOc 52252
adanet/core/report_accessor.py sha256=KziOGyb5IIKJVrUPEfAQulUI4a6W8Q_BvqKCLy0CZSU 5581
adanet/core/report_materializer.py sha256=hCQY-qHWVIoU5Ceh8Qk3QgPHozK04LhAlRR7QmelSHA 5843
adanet/core/summary.py sha256=D7OQLPZ40RyS9HBUMQTyJ7AIdU5HhwlLpik-MzdHS5U 35495
adanet/core/timer.py sha256=Kx9fzDzRnDt76W0YYpYhvjD3O0jHGX2gIeL9nUE6Obc 1282
adanet/core/tpu_estimator.py sha256=ZIokdTIBK1yWlarbJdbwERXsU0_W3brvCycX-i5JpAw 18891
adanet/distributed/__init__.py sha256=CxSEIRKCWPbhTh6t1hPRAUS_7hTqxWxLFfrdPczPTyo 1159
adanet/distributed/devices.py sha256=X5yQK_TYikSndCnXB0gStWhiQhnVe_-sOjAW_pEafdY 2402
adanet/distributed/placement.py sha256=zLq-niRqP7b_8F-rf6GH2k4n9RHzBxNsLN_Y6xXZBF8 12552
adanet/ensemble/__init__.py sha256=NfO34VpCa3TJ_IkIVeT8Uxqi8TVifMISSr6ShVjXrFc 1869
adanet/ensemble/ensembler.py sha256=NK6hk7je13rXhA-D0_B-rhEcCdW775j8z4EGXO3Kq6k 6215
adanet/ensemble/mean.py sha256=yLUKw075dhXfTa0LJtwWFMo7irvK_iKQdfvILskKWHY 5019
adanet/ensemble/strategy.py sha256=XTXXE6bcdGAZU0vwMrlVYlO9tyatF5njkOrCBT93bl8 4100
adanet/ensemble/weighted.py sha256=iyeLFPENe3aEmeMU-aIu_9F4j4MhT0fn0j00CTNdPpE 25487
adanet/examples/__init__.py sha256=00QMtndCSsHOJ6J-K9QTJNkHngq68bEZlAwva15z6xQ 618
adanet/examples/simple_dnn.py sha256=sCWHzZpgSidRoKnw9euJKe917M0c-ViDjAvkwjkQms8 8005
adanet/replay/__init__.py sha256=Egg_hboml2dKTPoQMT9EKnB7c1TWNsWrWfl24OTMA1s 1975
adanet/subnetwork/__init__.py sha256=5mEg3SGhsEZU6S5WLQY1M6bvhoLb1mhOwbdMB6ttQ1g 1290
adanet/subnetwork/generator.py sha256=YF8u7QZN4jNfBZjCEcLQ6CNhxz_s1lRjDuqVJGFVSr8 14469
adanet/subnetwork/report.py sha256=tIdmrDy0xbiheB3ixIYcTQ0MYdwZtjFEN4Vhg4rK9js 8294
adanet/tf_compat/__init__.py sha256=RfdG05BhHSxyccnDllHgd8NzrV3Yh5vSQREcvICx8Vw 6952
adanet-0.9.0.dist-info/LICENSE.txt sha256=WNHhf_5RCaeuKWyq_K39vmp9F28LxKsB4SpomwSZ2L0 11357
adanet-0.9.0.dist-info/METADATA sha256=B-6zv36YiOk9Yh6-YcLD_A4Nyz1SrJemHJzrTXpWQCM 1584
adanet-0.9.0.dist-info/WHEEL sha256=kGT74LWyRUZrL4VgLh6_g12IeVl_9u9ZVhadrgXZUEY 110
adanet-0.9.0.dist-info/top_level.txt sha256=VKAVXSUra0y4_hplwRRZWL5Cgfl4WBj82YB_TUf3384 7
adanet-0.9.0.dist-info/RECORD

top_level.txt

adanet