active-pre-train-ppg

View on PyPIReverse Dependencies (0)

0.0.8 active_pre_train_ppg-0.0.8-py3-none-any.whl

Wheel Details

Project: active-pre-train-ppg
Version: 0.0.8
Filename: active_pre_train_ppg-0.0.8-py3-none-any.whl
Download: [link]
Size: 39404
MD5: 27ac9b5a63722df0211df059aedf3c6d
SHA256: 0448ec3ffb617a79f1ca82de2f4fa66dbc56ab27cf04e5789d74859edc2f6190
Uploaded: 2022-03-10 10:25:22 +0000

dist-info

METADATA

Metadata-Version: 2.1
Name: active-pre-train-ppg
Version: 0.0.8
Summary: Unsupervised pre-training with PPG
Author: Lars Mueller
Author-Email: lamue120[at]hhu.de
Home-Page: https://github.com/tnfru/unsupervised-on-policy
Project-Url: Bug Tracker, https://github.com/tnfru/unsupervised-on-policy/issues
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Requires-Python: >=3.6
Requires-Dist: numpy
Requires-Dist: torch
Requires-Dist: matplotlib
Requires-Dist: wandb
Requires-Dist: ale-py
Requires-Dist: gym[accept-rom-license,atari] (>=0.21.0)
Requires-Dist: kornia
Requires-Dist: supersuit
Requires-Dist: stable-baselines3
Requires-Dist: einops
Description-Content-Type: text/markdown
License-File: LICENSE
[Description omitted; length: 684 characters]

WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.37.1)
Root-Is-Purelib: true
Tag: py3-none-any

RECORD

Path Digest Size
ppg/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ppg/agent.py sha256=TSrS9Jpamh3DMOQpm6I4Nv5SLQcL0RaNV9ppRh-zXJg 6407
ppg/aux_training.py sha256=rj_1UFi3CD7WojktgEbMfJ4X02gIytjROgVLP00nX_M 2466
ppg/critic_training.py sha256=vRVQ8QOZTUD_PbuY0rIalLLhb9zpG5TKXEINVPuBpjw 1768
ppg/gae.py sha256=Ok-EEsJB2dB0htdom2IRAqUa1JT7C6V--fKtpkfr8YA 1578
ppg/networks.py sha256=hX12f4ARTE2ITTIpqFqOZmDxDixjfk9eemhBCyZQB7Q 4322
ppg/ppo_training.py sha256=912QGOJ_5cHV-Vlqk5gVoNgRz2TYQAMBuVUt2IZHQus 3495
ppg/trajectory.py sha256=mFqg1zQHHbcBaZtN8wBgRdX9wPmBMyzdyTyfb1AzXjY 2803
ppg/test/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
ppg/test/test_gae.py sha256=LcglkgY6vsRrSbCGSyLquPSLGZZG_TI_9eBarkHfaiE 1773
pretrain/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
pretrain/contrastive_learning.py sha256=Ziwj64i7ovT-lcpz9_280hWZc4d6NcmHJ1mOYka_kFI 3518
pretrain/contrastive_training.py sha256=OapVi9jjFJkX5wdfQslKeNhdKBV8E3gUYWWhL4hb5YE 876
pretrain/data_augmentation.py sha256=thGmS5Ini7bUThSKyKuIg2L1a4CtmhAJn8-jiPr1G0g 1101
pretrain/environment.py sha256=TUaM65vXmecvVyE3Z7y2Qs3AhQvvxs6mKLxaO6y6B00 1881
pretrain/reward.py sha256=p7IkQtopulfcKlYZm_t_95yq7NtK5S3pmhO-yy_AaWQ 3733
pretrain/state_data.py sha256=LH3ksGP5rQIaRHsxeKw5YKftbdF8OOa5c8n49ubPx4Q 443
unsupervised_on_policy/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
unsupervised_on_policy/rollout.py sha256=HCNa1Xf880UX7TqziZW6SDY5unIc7iyZn5UNOVwiQFU 2893
unsupervised_on_policy/run_train.py sha256=tAkowurY7oBpuJIoD5GX6aN5yYd9NXmWNpGm-rEp8X4 2646
unsupervised_on_policy/ppg/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
unsupervised_on_policy/ppg/agent.py sha256=TSrS9Jpamh3DMOQpm6I4Nv5SLQcL0RaNV9ppRh-zXJg 6407
unsupervised_on_policy/ppg/aux_training.py sha256=rj_1UFi3CD7WojktgEbMfJ4X02gIytjROgVLP00nX_M 2466
unsupervised_on_policy/ppg/critic_training.py sha256=vRVQ8QOZTUD_PbuY0rIalLLhb9zpG5TKXEINVPuBpjw 1768
unsupervised_on_policy/ppg/gae.py sha256=Ok-EEsJB2dB0htdom2IRAqUa1JT7C6V--fKtpkfr8YA 1578
unsupervised_on_policy/ppg/networks.py sha256=hX12f4ARTE2ITTIpqFqOZmDxDixjfk9eemhBCyZQB7Q 4322
unsupervised_on_policy/ppg/ppo_training.py sha256=912QGOJ_5cHV-Vlqk5gVoNgRz2TYQAMBuVUt2IZHQus 3495
unsupervised_on_policy/ppg/trajectory.py sha256=mFqg1zQHHbcBaZtN8wBgRdX9wPmBMyzdyTyfb1AzXjY 2803
unsupervised_on_policy/ppg/test/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
unsupervised_on_policy/ppg/test/test_gae.py sha256=LcglkgY6vsRrSbCGSyLquPSLGZZG_TI_9eBarkHfaiE 1773
unsupervised_on_policy/pretrain/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
unsupervised_on_policy/pretrain/contrastive_learning.py sha256=Ziwj64i7ovT-lcpz9_280hWZc4d6NcmHJ1mOYka_kFI 3518
unsupervised_on_policy/pretrain/contrastive_training.py sha256=OapVi9jjFJkX5wdfQslKeNhdKBV8E3gUYWWhL4hb5YE 876
unsupervised_on_policy/pretrain/data_augmentation.py sha256=thGmS5Ini7bUThSKyKuIg2L1a4CtmhAJn8-jiPr1G0g 1101
unsupervised_on_policy/pretrain/environment.py sha256=TUaM65vXmecvVyE3Z7y2Qs3AhQvvxs6mKLxaO6y6B00 1881
unsupervised_on_policy/pretrain/reward.py sha256=p7IkQtopulfcKlYZm_t_95yq7NtK5S3pmhO-yy_AaWQ 3733
unsupervised_on_policy/pretrain/state_data.py sha256=LH3ksGP5rQIaRHsxeKw5YKftbdF8OOa5c8n49ubPx4Q 443
unsupervised_on_policy/utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
unsupervised_on_policy/utils/logger.py sha256=s5uPNL5WnFkFNDDDcOj12ou1SlY_o09e5YNPn5ZfnIA 3937
unsupervised_on_policy/utils/network_utils.py sha256=4YHsuTxfA9tDpKBV5Qbrl5kp7tG27GhuEQyeiF3RqF0 3971
unsupervised_on_policy/utils/rollout_utils.py sha256=qj9nLUdzreX_3k6V946pY28B1ByK79GDbvGbM-6pMlg 1302
utils/__init__.py sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU 0
utils/logger.py sha256=s5uPNL5WnFkFNDDDcOj12ou1SlY_o09e5YNPn5ZfnIA 3937
utils/network_utils.py sha256=4YHsuTxfA9tDpKBV5Qbrl5kp7tG27GhuEQyeiF3RqF0 3971
utils/rollout_utils.py sha256=qj9nLUdzreX_3k6V946pY28B1ByK79GDbvGbM-6pMlg 1302
active_pre_train_ppg-0.0.8.dist-info/LICENSE sha256=E9uWGTx_8Nqk5rfRFlB9vuD_RqxUOP1UapnEGOyVENw 1048
active_pre_train_ppg-0.0.8.dist-info/METADATA sha256=qWhS-t-ou7urHqMbupjIaLLNARyP01bfbg6O9lW8yyY 1519
active_pre_train_ppg-0.0.8.dist-info/WHEEL sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA 92
active_pre_train_ppg-0.0.8.dist-info/top_level.txt sha256=1ad5aAt-qifbRPFpKIoAQ2myPbUzI3WscQwMKrhN3T4 42
active_pre_train_ppg-0.0.8.dist-info/RECORD

top_level.txt

ppg
pretrain
unsupervised_on_policy
utils